Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Eur J Hum Genet ; 32(5): 545-549, 2024 May.
Article in English | MEDLINE | ID: mdl-38351293

ABSTRACT

Severe ventriculomegaly is a rare congenital brain defect, usually detected in utero, of poor neurodevelopmental prognosis. This ventricular enlargement can be the consequence of different mechanisms: either by a disruption of the cerebrospinal fluid circulation or abnormalities of its production/absorption. The aqueduct stenosis is one of the most frequent causes of obstructive ventriculomegaly, however, fewer than 10 genes have been linked to this condition and molecular bases remain often unknown. We report here 4 fetuses from 2 unrelated families presenting with ventriculomegaly at prenatal ultra-sonography as well as an aqueduct stenosis and skeletal abnormalities as revealed by fetal autopsy. Genome sequencing identified biallelic pathogenic variations in LIG4, a DNA-repair gene responsible for the LIG4 syndrome which associates a wide range of clinical manifestations including developmental delay, microcephaly, short stature, radiation hypersensitivity and immunodeficiency. Thus, not only this report expands the phenotype spectrum of LIG4-related disorders, adding ventriculomegaly due to aqueduct stenosis, but we also provide the first neuropathological description of fetuses carrying LIG4 pathogenic biallelic variations.


Subject(s)
DNA Ligase ATP , Hydrocephalus , Phenotype , Humans , Female , Hydrocephalus/genetics , Hydrocephalus/pathology , Hydrocephalus/diagnostic imaging , Male , DNA Ligase ATP/genetics , Cerebral Aqueduct/pathology , Cerebral Aqueduct/abnormalities , Cerebral Aqueduct/diagnostic imaging , Fetus/pathology , Pregnancy , Mutation , Adult , Constriction, Pathologic/genetics , Constriction, Pathologic/pathology
2.
Prenat Diagn ; 43(13): 1666-1670, 2023 12.
Article in English | MEDLINE | ID: mdl-37964427

ABSTRACT

Neu Laxova syndrome (NLS) is a rare and lethal congenital disorder characterized by severe intra-uterine growth retardation (IUGR), ichthyosis, abnormal facial features, limb abnormalities with arthrogryposis and a wide spectrum of severe malformations of the central nervous system (CNS). NLS is due to biallelic variants in three genes previously involved in serine-deficiency disorders (PHGDH, PSAT1 and PSPH), extending the phenotypic spectrum of these disorders.


Subject(s)
Ichthyosis , Microcephaly , Pregnancy , Female , Humans , Pregnancy Trimester, First , Microcephaly/genetics , Fetal Growth Retardation/diagnosis , Fetal Growth Retardation/genetics , Ichthyosis/diagnosis , Ichthyosis/genetics , Phenotype
3.
iScience ; 26(7): 107147, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37434700

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs) are restriction factors that block many viruses from entering cells. High levels of type I interferon (IFN) are associated with adverse pregnancy outcomes, and IFITMs have been shown to impair the formation of syncytiotrophoblast. Here, we examine whether IFITMs affect another critical step of placental development, extravillous cytotrophoblast (EVCT) invasion. We conducted experiments using in vitro/ex vivo models of EVCT, mice treated in vivo with the IFN-inducer poly (I:C), and human pathological placental sections. Cells treated with IFN-ß demonstrated upregulation of IFITMs and reduced invasive abilities. Transduction experiments confirmed that IFITM1 contributed to the decreased cell invasion. Similarly, migration of trophoblast giant cells, the mouse equivalent of human EVCTs, was significantly reduced in poly (I:C)-treated mice. Finally, analysis of CMV- and bacterial-infected human placentas revealed upregulated IFITM1 expression. These data demonstrate that high levels of IFITM1 impair trophoblast invasion and could explain the placental dysfunctions associated with IFN-mediated disorders.

4.
Birth Defects Res ; 115(5): 563-571, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36538874

ABSTRACT

BACKGROUND: Hereditary lymphedema 1 is a rare congenital condition, characterized by the development of chronic swelling in body parts. It is highly variable in expression and age of onset with different presentations: from feet edema to hydrops fetalis. This affection is genetically heterogeneous with autosomal dominant inheritance and incomplete penetrance due to a mutation in the FLT4 gene in most cases. CASES: In our study, we report on two fetuses harboring congenital lymphedema with FLT4 variation and review the prenatal confirmed ones of the literatures. Our cases were selected within fetuses explored by exome sequencing in a diagnosis setting. Prenatal ultrasonography showed hydrops fetalis in one case and an increased nuchal translucency with hydrothorax in the other. Comparative genomic hybridization array on amniocentesis was normal in both cases. Exome sequencing identified a variation p.(Ser1275Thr) and p.(Ser1275Arg) in fetus 1 and fetus 2 in the FLT4 gene, respectively. A de novo mutation at the same codon was reported in prenatal literature suggesting possible genotype phenotype correlation. CONCLUSION: Cystic hygroma/hydrops fetalis are possible manifestations of several disorders. This study illustrates how the integration of exome sequencing in prenatal clinical practice can facilitate the diagnosis and genetic counseling of heterogeneous developmental affections.


Subject(s)
Hydrops Fetalis , Lymphedema , Humans , Pregnancy , Female , Hydrops Fetalis/diagnosis , Hydrops Fetalis/genetics , Comparative Genomic Hybridization , Lymphedema/congenital , Lymphedema/diagnosis , Lymphedema/genetics , Ultrasonography, Prenatal , Mutation , Vascular Endothelial Growth Factor Receptor-3/genetics
5.
PLoS One ; 17(10): e0275674, 2022.
Article in English | MEDLINE | ID: mdl-36260644

ABSTRACT

BACKGROUND: In early terminations of pregnancy for fetal anomaly (TOPFA) without identified cytogenetic abnormality, a fetal autopsy is recommended for diagnostic purposes, to guide genetic counseling. Medical induction, which allows analysis of a complete fetus, is generally preferred over surgical vacuum aspiration. Our objective was to assess the diagnostic value of fetal autopsies in these early terminations, relative to the first-trimester ultrasound, overall and by termination method. MATERIALS: For this retrospective study at the Port Royal Maternity Hospital, we identified all TOPFA performed from 11 weeks to 16 weeks diagnosed at the first-trimester ultrasound in cases with a normal karyotype. The principal endpoint was the additional value of the autopsy over /compared to the ultrasound and its impact on genetic counseling, globally and by termination method. The secondary objective was to compare the complication rate by method of termination. RESULTS: The study included 79 women during period of 2013-2017: 42 with terminations by medical induction and 37 by aspiration. Fetal autopsy found additional abnormalities in 54.4% of cases, more frequently after medical induction (77.5%) than after aspiration (21.4%, p < .01). Genetic counseling was modified in 20.6% of cases, more often after induction (32.5% vs 3.6%, p < .01). The length of stay was significantly longer and a secondary aspiration was required in 16,7% of case in the medical induction group (p < .01). CONCLUSION: Medically induced vaginal expulsion appears preferable and can change genetic counseling for subsequent pregnancies.


Subject(s)
Abortion, Induced , Fetus , Female , Pregnancy , Humans , Autopsy , Retrospective Studies , Fetus/diagnostic imaging , Fetus/abnormalities , Abortion, Induced/methods , Pregnancy Trimester, Second
6.
Hum Mutat ; 43(3): 347-361, 2022 03.
Article in English | MEDLINE | ID: mdl-35005812

ABSTRACT

We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.


Subject(s)
Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Antigens, Neoplasm , Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Female , Fetus/abnormalities , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Kidney/abnormalities , Kidney Diseases/congenital , Kidney Diseases/diagnosis , Kidney Diseases/genetics , Male , Mutation , Polycystic Kidney, Autosomal Dominant/genetics
7.
J Med Genet ; 59(6): 559-567, 2022 06.
Article in English | MEDLINE | ID: mdl-33820833

ABSTRACT

BACKGROUND: Arthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families. METHODS: Several genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants. RESULTS: We achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRG6, ADCY6, GLDN, LGI4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%). CONCLUSION: New genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.


Subject(s)
Arthrogryposis , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Arthrogryposis/pathology , Genomics , Humans , Pedigree , Phenotype , Proteins/genetics , Transcription Factors/genetics , Exome Sequencing
8.
Prenat Diagn ; 42(1): 118-135, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34894355

ABSTRACT

OBJECTIVE: Terminal 6q deletion is a rare genetic condition associated with a neurodevelopmental disorder characterized by intellectual disability and structural brain anomalies. Interestingly, a similar phenotype is observed in patients harboring pathogenic variants in the DLL1 gene. Our study aimed to further characterize the prenatal phenotype of this syndrome as well as to attempt to establish phenotype-genotype correlations. METHOD: We collected ultrasound findings from 22 fetuses diagnosed with a pure 6qter deletion. We reviewed the literature and compared our 22 cases with 14 fetuses previously reported as well as with patients with heterozygous DLL1 pathogenic variants. RESULTS: Brain structural alterations were observed in all fetuses. The most common findings (>70%) were cerebellar hypoplasia, ventriculomegaly, and corpus callosum abnormalities. Gyration abnormalities were observed in 46% of cases. Occasional findings included cerebral heterotopia, aqueductal stenosis, vertebral malformations, dysmorphic features, and kidney abnormalities. CONCLUSION: This is the first series of fetuses diagnosed with pure terminal 6q deletion. Based on our findings, we emphasize the prenatal sonographic anomalies, which may suggest the syndrome. Furthermore, this study highlights the importance of chromosomal microarray analysis to search for submicroscopic deletions of the 6q27 region involving the DLL1 gene in fetuses with these malformations.


Subject(s)
Calcium-Binding Proteins/analysis , Chromosome Disorders/complications , Membrane Proteins/analysis , Adult , Calcium-Binding Proteins/genetics , Chromosome Disorders/genetics , Chromosomes, Human, Pair 6/genetics , Female , Humans , Membrane Proteins/genetics , Phenotype , Pregnancy , Retrospective Studies , Trisomy/genetics , Virulence/genetics , Virulence/physiology
9.
PLoS One ; 16(9): e0255890, 2021.
Article in English | MEDLINE | ID: mdl-34492029

ABSTRACT

OBJECTIVE: To determine whether bladder size is associated with an unfavorable neonatal outcome, in the case of first-trimester megacystis. MATERIALS AND METHODS: This was a retrospective observational study between 2009 and 2019 in two prenatal diagnosis centers. The inclusion criterion was an enlarged bladder (> 7 mm) diagnosed at the first ultrasound exam between 11 and 13+6 weeks of gestation. The main study endpoint was neonatal outcome based on bladder size. An adverse outcome was defined by the completion of a medical termination of pregnancy, the occurrence of in utero fetal death, or a neonatal death. Neonatal survival was considered as a favorable outcome and was defined by a live birth, with or without normal renal function, and with a normal karyotype. RESULTS: Among 75 cases of first-trimester megacystis referred to prenatal diagnosis centers and included, there were 63 (84%) adverse outcomes and 12 (16%) live births. Fetuses with a bladder diameter of less than 12.5 mm may have a favorable outcome, with or without urological problems, with a high sensitivity (83.3%) and specificity (87.3%), area under the ROC curve = 0.93, 95% CI (0.86-0.99), p< 0.001. Fetal autopsy was performed in 52 (82.5%) cases of adverse outcome. In the 12 cases of favorable outcome, pediatric follow-up was normal and non-pathological in 8 (66.7%). CONCLUSION: Bladder diameter appears to be a predictive marker for neonatal outcome. Fetuses with smaller megacystis (7-10 mm) have a significantly higher chance of progressing to a favorable outcome. Urethral stenosis and atresia are the main diagnoses made when first-trimester megacystis is observed. Karyotyping is important regardless of bladder diameter.


Subject(s)
Duodenum/abnormalities , Fetal Diseases/pathology , Prenatal Diagnosis/methods , Urinary Bladder/abnormalities , Adult , Duodenum/diagnostic imaging , Duodenum/pathology , Female , Fetal Diseases/diagnostic imaging , Gestational Age , Humans , Infant, Newborn , Karyotyping , Pregnancy , Pregnancy Outcome , Pregnancy Trimester, First , Prognosis , ROC Curve , Retrospective Studies , Survival Rate , Ultrasonography, Prenatal/methods , Urinary Bladder/diagnostic imaging , Urinary Bladder/pathology
10.
Am J Obstet Gynecol ; 223(2): 256.e1-256.e9, 2020 08.
Article in English | MEDLINE | ID: mdl-32283072

ABSTRACT

BACKGROUND: Despite undisputable benefits, midtrimester prenatal surgery is not a cure for myelomeningocele (MMC): residual intracranial and motor deficits leading to lifelong handicap question the timing of prenatal surgery. Indeed, the timing and intensity of intrauterine spinal cord injury remains ill defined. OBJECTIVE: We aimed to describe the natural history of neuronal loss in MMC in utero based on postmortem pathology. STUDY DESIGN: Pathology findings were analyzed in 186 cases of myelomeningocele with lesion level between S1 and T1. Using a case-control, cross-sectional design, we investigated the timewise progression and topographic extension of neuronal loss between 13 and 39 weeks. Motor neurons were counted on histology at several spinal levels in 54 isolated MMC meeting quality criteria for cell counting. These were expressed as observed-to-expected ratios, after matching for gestational age and spinal level with 41 controls. RESULTS: Chiari II malformation increased from 30.7% to 91.6% after 16 weeks. The exposed spinal cord displayed early, severe, and progressive neuronal loss: the observed-to-expected count dropped from 17% to ≤2% after 16 weeks. Neuronal loss extended beyond the lesion to the upper levels: in cases <16 weeks, the observed-to-expected motor neuron count was 60% in the adjacent spinal cord, decreasing at a rate of 16% per week. Progressive loss was also found in the upper thoracic cord, but in much smaller proportions. The observed-over-expected ratio of motor neurons was not correlated with the level of myelomeningocele. CONCLUSIONS: Significant neuronal loss is present ≤16 weeks in the exposed cord and progressively extends cranially. Earlier prenatal repair (<16 weeks) could prevent Chiari II malformation in 69.3% of cases, rescue the 17% remaining motor neurons in the exposed cord, and prevent the extension to the upper spinal cord.


Subject(s)
Arnold-Chiari Malformation/pathology , Gestational Age , Meningomyelocele/pathology , Motor Neurons/pathology , Spinal Cord/pathology , Abortion, Induced , Arnold-Chiari Malformation/embryology , Autopsy , Disease Progression , Female , Fetal Therapies , Humans , Lumbar Vertebrae , Meningomyelocele/embryology , Meningomyelocele/surgery , Neurosurgical Procedures , Pregnancy , Pregnancy Trimester, First , Pregnancy Trimester, Second , Retrospective Studies , Sacrum , Thoracic Vertebrae
11.
Hum Mutat ; 41(7): 1220-1225, 2020 07.
Article in English | MEDLINE | ID: mdl-32227665

ABSTRACT

Thrombocytopenia-absent radius (TAR) syndrome is characterized by radial defect and neonatal thrombocytopenia. It is caused by biallelic variants of RBM8A gene (1q21.1) with the association of a null allele and a hypomorphic noncoding variant. RBM8A encodes Y14, a core protein of the exon junction complex involved in messenger RNA maturation. To date, only two hypomorphic variants have been identified. We report on a cohort of 26 patients affected with TAR syndrome and carrying biallelic variants in RBM8A. Half patients carried a 1q21.1 deletion and one of the two known hypomorphic variants. Four novel noncoding variants of RBM8A were identified in the remaining patients. We developed experimental models enabling their functional characterization in vitro. Two variants, located respectively in the 5'-untranslated region (5'-UTR) and 3'-UTR regions, are responsible for a diminished expression whereas two intronic variants alter splicing. Our results bring new insights into the molecular knowledge of TAR syndrome and enabled us to propose genetic counseling for patients' families.


Subject(s)
Congenital Bone Marrow Failure Syndromes/genetics , RNA-Binding Proteins/genetics , Thrombocytopenia/genetics , Upper Extremity Deformities, Congenital/genetics , 5' Untranslated Regions , Adolescent , Adult , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 1 , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Radius/pathology , Young Adult
12.
Hum Mol Genet ; 28(5): 778-795, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30388224

ABSTRACT

Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.


Subject(s)
Congenital Abnormalities/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Kidney Diseases/congenital , Kidney/abnormalities , Kinesins/genetics , Loss of Function Mutation , Microcephaly/genetics , Oncogene Proteins/genetics , Animals , Congenital Abnormalities/metabolism , Cytokinesis/genetics , Disease Models, Animal , Female , Fluorescent Antibody Technique , Genes, Lethal , Genetic Association Studies/methods , Genetic Loci , Humans , Kidney/metabolism , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kinesins/chemistry , Kinesins/metabolism , Male , Microcephaly/metabolism , Microcephaly/pathology , Oncogene Proteins/chemistry , Oncogene Proteins/metabolism , Pedigree , Phenotype , Structure-Activity Relationship , Zebrafish
13.
Biol Reprod ; 91(5): 118, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25232018

ABSTRACT

Preimplantation factor (PIF) is a peptide secreted by viable mammalian embryos. Moreover, it can be detected in the circulation of pregnant women. Recently, it was shown that PIF promotes invasion in trophoblast cell lines in vitro. Successful human embryo implantation depends on a deep and highly controlled invasion of extravillous trophoblast (EVT) in the maternal endometrium. Trophoblast invasion is regulated in part by matrix metalloproteinase (MMP) activity and integrin expression. The present study demonstrates the presence of PIF in early pregnancy and characterizes its effects on primary human trophoblast invasion. At the fetomaternal interface, intense PIF labeling by immunohistochemistry was present during early gestation in villous trophoblasts and EVTs. A decrease of labeling was observed at term. Furthermore, PIF significantly promoted invasion of human EVT isolated from first-trimester placenta. The proinvasive regulatory effect of PIF in EVT was associated with 1) increased MMP9 activity and 2) reduced tissue inhibitor of metalloproteinase-1 (TIMP1) mRNA expression. PIF also regulated alpha v and alpha 1 integrin mRNA expressions. Last, the proinvasive effect of PIF appeared to be mediated by the mitogen-activated protein kinase (MAPK), phosphoinositide-3-kinase (PI3K), and Janus-kinase signal transducer and activator of transcription (JAK-STAT) signaling pathways. In summary, this work describes the direct, positive effect of PIF on the control of human trophoblastic cell invasion by modulation of MMP/TIMP balance and integrin expression. Moreover, these results suggest that PIF is involved in pathological pregnancies characterized by insufficient or excessive trophoblast invasion.


Subject(s)
Peptides/pharmacology , Trophoblasts/physiology , Adult , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cells, Cultured , Embryo Implantation/drug effects , Embryo Implantation/genetics , Female , Gestational Age , Humans , Keratins/metabolism , Peptides/physiology , Placenta/metabolism , Pregnancy , Pregnancy Complications/genetics , Pregnancy Complications/metabolism , Pregnancy Proteins/physiology , Trophoblasts/drug effects , Young Adult
14.
Am J Med Genet A ; 164A(11): 2724-31, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25111715

ABSTRACT

The 22q11 deletion syndrome is one of the most common human microdeletion syndromes, with a wide spectrum of abnormalities. The fetal phenotype associated with the 22q11 deletion is poorly described in the literature. A national retrospective study was performed from 74 feto-pathological examinations. The objectives were to evaluate the circumstances of the 22q11 deletion diagnosis and to describe fetal anomalies. Post mortem examinations were performed after 66 terminations of pregnancy and eight fetal deaths. The series included nine fetuses from the first trimester, 55 from the second trimester, and ten from the third trimester. A 22q11 FISH analysis was recommended for 57 fetuses after multidisciplinary prenatal diagnostic counseling and for 17 fetuses by a fetal pathologist. Conotruncal heart defects were the most common anomalies (65 fetuses), followed by thymus defects (62 fetuses), and malformations of the urinary tract (25 fetuses). This study identified several unusual and severe features rarely described in the literature. Neurological abnormalities were described in ten fetuses, with seven neural tube defects and five arhinencephalies. This series also included lethal malformations: two hypoplastic left heart syndromes, two bilateral renal agenesis, and one tracheal agenesis. Genetic analysis for a 22q11 deletion is usually indicated when a congenital conotruncal heart and/or thymus defect is detected, but might also be useful in case of other lethal or severe malformations that initially led to the termination of pregnancy.


Subject(s)
22q11 Deletion Syndrome/diagnosis , 22q11 Deletion Syndrome/genetics , Fetus , Phenotype , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Adult , Female , Genetic Association Studies , Genetic Counseling , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Pregnancy , Prenatal Diagnosis , Retrospective Studies
15.
Acta Neuropathol Commun ; 2: 69, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25059107

ABSTRACT

Complex cortical malformations associated with mutations in tubulin genes are commonly referred to as "Tubulinopathies". To further characterize the mutation frequency and phenotypes associated with tubulin mutations, we studied a cohort of 60 foetal cases. Twenty-six tubulin mutations were identified, of which TUBA1A mutations were the most prevalent (19 cases), followed by TUBB2B (6 cases) and TUBB3 (one case). Three subtypes clearly emerged. The most frequent (n = 13) was microlissencephaly with corpus callosum agenesis, severely hypoplastic brainstem and cerebellum. The cortical plate was either absent (6/13), with a 2-3 layered pattern (5/13) or less frequently thickened (2/13), often associated with neuroglial overmigration (4/13). All cases had voluminous germinal zones and ganglionic eminences. The second subtype was lissencephaly (n = 7), either classical (4/7) or associated with cerebellar hypoplasia (3/7) with corpus callosum agenesis (6/7). All foetuses with lissencephaly and cerebellar hypoplasia carried distinct TUBA1A mutations, while those with classical lissencephaly harbored recurrent mutations in TUBA1A (3 cases) or TUBB2B (1 case). The third group was polymicrogyria-like cortical dysplasia (n = 6), consisting of asymmetric multifocal or generalized polymicrogyria with inconstant corpus callosum agenesis (4/6) and hypoplastic brainstem and cerebellum (3/6). Polymicrogyria was either unlayered or 4-layered with neuronal heterotopias (5/6) and occasional focal neuroglial overmigration (2/6). Three had TUBA1A mutations and 3 TUBB2B mutations. Foetal TUBA1A tubulinopathies most often consist in microlissencephaly or classical lissencephaly with corpus callosum agenesis, but polymicrogyria may also occur. Conversely, TUBB2B mutations are responsible for either polymicrogyria (4/6) or microlissencephaly (2/6).


Subject(s)
Brain/abnormalities , Brain/pathology , Malformations of Cortical Development, Group I/diagnosis , Malformations of Cortical Development, Group I/genetics , Mutation/genetics , Tubulin/genetics , Autopsy , Brain/metabolism , DNA Mutational Analysis , Female , Fetus , Humans , Magnetic Resonance Imaging , Male , Malformations of Cortical Development, Group I/classification
16.
Am J Med Genet A ; 164A(10): 2504-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24975584

ABSTRACT

Inversion duplication and terminal deletion of the long arm of chromosome 13 (inv dup del 13q) is a rare chromosomal rearrangement: only five patients have been reported, mostly involving a ring chromosome 13. We report on additional three fetuses with pure inv dup del 13q: Patient 1 had macrosomia, enlarged kidneys, hypersegmented lungs, unilateral moderate ventriculomegaly, and a mild form of hand and feet preaxial polydactyly; Patient 2 had intrauterine growth retardation, widely spaced eyes, left microphthalmia, right anophthalmia, short nose, bilateral absent thumbs, cutaneous syndactyly of toes 4 and 5, bifid third metacarpal, a small left kidney, hyposegmented lungs, and partial agenesis of the corpus callosum; Patient 3 had widely spaced eyes, long and smooth philtrum, low-set ears, median notch in the upper alveolar ridge, bifid tongue, cutaneous syndactyly of toes 2 and 3, enlarged kidneys and pancreas, arhinencephaly, and partial agenesis of the corpus callosum. We compared the phenotypes of these patients to those previously reported for ring chromosome 13, pure 13q deletions and duplications. We narrowed some critical regions previously reported for lung, kidney and fetal growth, and for thumb, cerebral, and eye anomalies.


Subject(s)
Chromosome Disorders/genetics , Chromosome Disorders/pathology , Chromosome Inversion/genetics , Fetus/pathology , Gene Duplication/genetics , Chromosome Deletion , Chromosomes, Human, Pair 13/genetics , Female , Genetic Association Studies , Humans , Male , Phenotype , Ring Chromosomes
17.
Acta Neuropathol ; 126(3): 427-42, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23820807

ABSTRACT

L1 syndrome results from mutations in the L1CAM gene located at Xq28. It encompasses a wide spectrum of diseases, X-linked hydrocephalus being the most severe phenotype detected in utero, and whose pathophysiology is incompletely understood. The aim of this study was to report detailed neuropathological data from patients with mutations, to delineate the neuropathological criteria required for L1CAM gene screening in foetuses by characterizing the sensitivity, specificity and positive predictive value of the cardinal signs, and to discuss the main differential diagnoses in non-mutated foetuses in order to delineate closely related conditions without L1CAM mutations. Neuropathological data from 138 cases referred to our genetic laboratory for screening of the L1CAM gene were retrospectively reviewed. Fifty-seven cases had deleterious L1CAM mutations. Of these, 100 % had hydrocephalus, 88 % adducted thumbs, 98 % pyramidal tract agenesis/hypoplasia, 90 % stenosis of the aqueduct of Sylvius and 68 % agenesis/hypoplasia of the corpus callosum. Two foetuses had L1CAM mutations of unknown significance. Seventy-nine cases had no L1CAM mutations; these were subdivided into four groups: (1) hydrocephalus sometimes associated with corpus callosum agenesis (44 %); (2) atresia/forking of the aqueduct of Sylvius/rhombencephalosynapsis spectrum (27 %); (3) syndromic hydrocephalus (9 %), and (4) phenocopies with no mutations in the L1CAM gene (20 %) and in whom family history strongly suggested an autosomal recessive mode of transmission. These data underline the existence of closely related clinical entities whose molecular bases are currently unknown. The identification of the causative genes would greatly improve our knowledge of the defective pathways involved in these cerebral malformations.


Subject(s)
Cerebral Aqueduct/abnormalities , Cerebral Aqueduct/pathology , Genetic Diseases, X-Linked/pathology , Hydrocephalus/pathology , Nervous System Diseases/pathology , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Female , Humans , Infant, Newborn , Mutation/genetics , Nervous System Diseases/genetics , Neural Cell Adhesion Molecule L1/genetics , Pedigree , Phenotype , Pregnancy
18.
Prenat Diagn ; 33(1): 32-41, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23168908

ABSTRACT

OBJECTIVES: Karyotyping is a well-established method of investigating the genetic content of product of conceptions (POCs). Because of the high rate of culture failure and maternal cell contamination, failed results or 46,XX findings are often obtained. Different molecular approaches that are not culture dependent have been proposed to circumvent these limits. On the basis of the robust experience previously obtained with bacterial artificial chromosomes (BACs)-on-Beads™ (BoBs™), we evaluated the same technology that we had used for the analysis of prenatal samples on POCs. METHOD: KaryoLite™ BoBs™ includes 91 beads, each of which is conjugated with a composite of multiple neighboring BACs according to the hg19 assembly. It quantifies proximal and terminal regions of each chromosome arm. The study included 376 samples. RESULTS: The failure rate was 2%, and reproducibility >99%; false-positive and false-negative rates were <1% for non-mosaic aneuploidies and imbalances effecting all three BACs in a contig. Detection rate for partial terminal imbalances was 65.5%. The mosaic detection threshold was 50%, and the success rate in macerated samples was 87.8%. The aneuploidy detection rate in samples with cell growth failure was 27.8%, and maternal cell contamination was suspected in 23.1% of 46,XX cultured cells. CONCLUSION: KaryoLite™ BoBs™ as a 'first-tier' test in combination with other approaches showed beneficial, cost-effective and clearly enhanced POC testing.


Subject(s)
Abortion, Spontaneous/genetics , Chromosome Aberrations/embryology , Algorithms , Aneuploidy , Chromosomes, Artificial, Bacterial , Cytogenetic Analysis , Female , Fetus/chemistry , Humans , Karyotyping , Microspheres , Placenta/chemistry , Pregnancy , Reproducibility of Results , Retrospective Studies
19.
Am J Hum Genet ; 91(6): 1135-43, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23217329

ABSTRACT

Cobblestone lissencephaly is a peculiar brain malformation with characteristic radiological anomalies. It is defined as cortical dysplasia that results when neuroglial overmigration into the arachnoid space forms an extracortical layer that produces agyria and/or a "cobblestone" brain surface and ventricular enlargement. Cobblestone lissencephaly is pathognomonic of a continuum of autosomal-recessive diseases characterized by cerebral, ocular, and muscular deficits. These include Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama muscular dystrophy. Mutations in POMT1, POMT2, POMGNT1, LARGE, FKTN, and FKRP identified these diseases as alpha-dystroglycanopathies. Our exhaustive screening of these six genes, in a cohort of 90 fetal cases, led to the identification of a mutation in only 53% of the families, suggesting that other genes might also be involved. We therefore decided to perform a genome-wide study in two multiplex families. This allowed us to identify two additional genes: TMEM5 and ISPD. Because TMEM has a glycosyltransferase domain and ISPD has an isoprenoid synthase domain characteristic of nucleotide diP-sugar transferases, these two proteins are thought to be involved in the glycosylation of dystroglycan. Further screening of 40 families with cobblestone lissencephaly identified nonsense and frameshift mutations in another four unrelated cases for each gene, increasing the mutational rate to 64% in our cohort. All these cases displayed a severe phenotype of cobblestone lissencephaly A. TMEM5 mutations were frequently associated with gonadal dysgenesis and neural tube defects, and ISPD mutations were frequently associated with brain vascular anomalies.


Subject(s)
Cobblestone Lissencephaly/genetics , Membrane Proteins/genetics , Mutation , Nucleotidyltransferases/genetics , Alleles , Cobblestone Lissencephaly/diagnosis , Consanguinity , Exons , Family , Fetus/metabolism , Fetus/pathology , Gene Order , Genotype , Humans , Introns , Pentosyltransferases
20.
J Med Genet ; 49(11): 698-707, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23024289

ABSTRACT

BACKGROUND: CHARGE syndrome is a rare, usually sporadic disorder of multiple congenital anomalies ascribed to a CHD7 gene mutation in 60% of cases. Although the syndrome is well characterised in children, only one series of 10 fetuses with CHARGE syndrome has been reported to date. Therefore, we performed a detailed clinicopathological survey in our series of fetuses with CHD7 mutations, now extended to 40 cases. CHARGE syndrome is increasingly diagnosed antenatally, but remains challenging in many instances. METHOD: Here we report a retrospective study of 40 cases of CHARGE syndrome with a CHD7 mutation, including 10 previously reported fetuses, in which fetal or neonatal clinical, radiological and histopathological examinations were performed. RESULTS: Conversely to postnatal studies, the proportion of males is high in our series (male to female ratio 2.6:1) suggesting a greater severity in males. Features almost constant in fetuses were external ear anomalies, arhinencephaly and semicircular canal agenesis, while intrauterine growth retardation was never observed. Finally, except for one, all other mutations identified in our antenatal series were truncating, suggesting a possible phenotype-genotype correlation. CONCLUSIONS: Clinical analysis allowed us to refine the clinical description of CHARGE syndrome in fetuses, describe some novel features and set up diagnostic criteria in order to help the diagnosis of CHARGE syndrome after termination of pregnancies following the detection of severe malformations.


Subject(s)
CHARGE Syndrome , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Mutation , Abnormalities, Multiple/genetics , Adult , CHARGE Syndrome/diagnosis , CHARGE Syndrome/genetics , CHARGE Syndrome/physiopathology , Child , Female , Fetus , Humans , Male , Phenotype , Pregnancy , Pregnancy Complications , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...