Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 42(30): 5966-5990, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35710623

ABSTRACT

Metabolic state can alter olfactory sensitivity, but it is unknown whether the activity of the olfactory bulb (OB) may fine tune metabolic homeostasis. Our objective was to use CRISPR gene editing in male and female mice to enhance the excitability of mitral/tufted projection neurons (M/TCs) of the OB to test for improved metabolic health. Ex vivo slice recordings of MCs in CRISPR mice confirmed increased excitability due the targeted loss of Kv1.3 channels, which resulted in a less negative resting membrane potential (RMP), enhanced action potential (AP) firing, and insensitivity to the selective channel blocker margatoxin (MgTx). CRISPR mice exhibited enhanced odor discrimination using a habituation/dishabituation paradigm. CRISPR mice were challenged for 25 weeks with a moderately high-fat (MHF) diet, and compared with littermate controls, male mice were resistance to diet-induced obesity (DIO). Female mice did not exhibit DIO. CRISPR male mice gained less body weight, accumulated less white adipose tissue, cleared a glucose challenge more quickly, and had less serum leptin and liver triglycerides. CRISPR male mice consumed equivalent calories as control littermates, and had unaltered energy expenditure (EE) and locomotor activity, but used more fats for metabolic substrate over that of carbohydrates. Counter to CRISPR-engineered mice, by using chemogenetics to decrease M/TC excitability in male mice, activation of inhibitory designer receptors exclusively activated by designer drugs (DREADDs) caused a decrease in odor discrimination, and resulted in a metabolic profile that was obesogenic, mice had reduced EE and oxygen consumption (VO2). We conclude that the activity of M/TC projection neurons canonically carries olfactory information and simultaneously can regulate whole-body metabolism.SIGNIFICANCE STATEMENT The olfactory system drives food choice, and olfactory sensitivity is strongly correlated to hunger and fullness. Olfactory function thereby influences nutritional balance and obesity outcomes. Obesity has become a health and financial crisis in America, shortening life expectancy and increasing the severity of associated illnesses. It is expected that 51% of Americans will be obese by the year 2030. Using CRISPR gene editing and chemogenetic approaches, we discovered that changing the excitability of output neurons in the olfactory bulb (OB) affects metabolism and body weight stabilization in mice. Our results suggest that long-term therapeutic targeting of OB activity to higher processing centers may be a future clinical treatment of obesity or type II Diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Body Weight , Diet, High-Fat , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Obesity/metabolism , Olfactory Bulb/physiology
2.
J Physiol ; 600(6): 1473-1495, 2022 03.
Article in English | MEDLINE | ID: mdl-34807463

ABSTRACT

Excess nutrition causes loss of olfactory sensory neurons (OSNs) and reduces odour discrimination and odour perception in mice. To separate diet-induced obesity from the consumption of dietary fat, we designed pair-feeding experiments whereby mice were maintained on isocaloric diets for 5 months, which prevented increased fat storage. To test our hypothesis that adiposity was not a prerequisite for loss of OSNs and bulbar projections, we used male and female mice with an odorant receptor-linked genetic reporter (M72tauLacZ; Olfr160) to visualize neural circuitry changes resulting from elevated fat in the diet. Simultaneously we monitored glucose clearance (diagnostic for prediabetes), body fat deposition, ingestive behaviours, select inflammatory markers and energy metabolism. Axonal projections to defined olfactory glomeruli were visualized in whole-mount brains, and the number of OSNs was manually counted across whole olfactory epithelia. After being pair fed a moderately high-fat (MHF) diet, mice of both sexes had body weight, adipose deposits, energy expenditure, respiratory exchange ratios and locomotor activity that were unchanged from control-fed mice. Despite this, they were still found to lose OSNs and associated bulbar projections. Even with unchanged adipocyte storage, pair-fed animals had an elevation in TNF cytokines and an intermediate ability for glucose clearance. Albeit improving health metrics, access to voluntary running while consuming an ad libitum fatty diet still precipitated a loss of OSNs and associated axonal projections for male mice. Our results support that long-term macronutrient imbalance can drive anatomical loss in the olfactory system regardless of total energy expenditure. KEY POINTS: Obesity can disrupt the structure and function of organ systems, including the olfactory system that is important for food selection and satiety. We designed dietary treatments in mice such that mice received fat, but the total calories provided were the same as in control diets so that they would not gain weight or increase adipose tissue. Mice that were not obese but consumed isocaloric fatty diets still lost olfactory neuronal circuits, had fewer numbers of olfactory neurons, had an elevation in inflammatory signals and had an intermediate ability to clear glucose (prediabetes). Mice were allowed access to running wheels while consuming fatty diets, yet still lost olfactory structures. We conclude that a long-term imbalance in nutrition that favours fat in the diet disrupts the olfactory system of mice in the absence of obesity.


Subject(s)
Olfactory Receptor Neurons , Prediabetic State , Animals , Diet, High-Fat/adverse effects , Dietary Fats , Female , Glucose , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Olfactory Receptor Neurons/metabolism , Prediabetic State/complications
3.
Front Cell Neurosci ; 15: 662184, 2021.
Article in English | MEDLINE | ID: mdl-34239417

ABSTRACT

Neuromodulation influences neuronal processing, conferring neuronal circuits the flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a continuously changing environment. In this original research report, we broadly discuss the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic communication, and voltage-dependent channels in the olfactory bulb. Because the olfactory system is positioned to integrate sensory inputs with information regarding the internal chemical and behavioral state of an animal, how olfactory information is modulated provides flexibility in coding and behavioral output. Herein we discuss how neuronal microcircuits control complex dynamics of the olfactory networks by homing in on a special class of local interneurons as an example. While receptors for neuromodulation and metabolic peptides are widely expressed in the olfactory circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and are involved in odor investigation and odor-dependent learning. Little is known about how metabolic peptides and neuromodulators control specific neuronal subpopulations. There is a microcircuit between mitral cells and interneurons that is comprised of deep-short-axon cells in the granule cell layer. These local interneurons express pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates this type of regulation. Our study investigates the means by which PPG neurons could be recruited by classical neuromodulators and hormonal peptides. We found that two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons. Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and eliciting bursts of action potentials, while serotonin does not affect PPG neuron excitability. The mechanisms behind this diverse modulation are not known, however, these results clearly indicate a complex interplay of metabolic signaling molecules and neuromodulators that may fine-tune neuronal microcircuits.

4.
J Appl Physiol (1985) ; 125(6): 1749-1759, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30284518

ABSTRACT

Isoflurane (ISO) is a commonly used anesthetic that offers rapid recovery for laboratory animal research. Initial studies indicated no difference in arterial Pco2 ( PaCO2 ) or pH between conscious (NO ISO) and 1% ISO-exposed CD-1 mice. Our laboratory investigated whether arterial blood sampling with 1% ISO is a suitable alternative to NO ISO sampling for monitoring ventilation in a commonly studied mouse strain. We hypothesized similar blood chemistry, breathing patterns, and cardiovascular responses with NO ISO and 1% ISO. C57BL/6J mice underwent unrestrained barometric plethysmography to quantify the pattern of breathing. Mice exposed to hypoxic and hypercapnic gas under 1% ISO displayed blunted responses; with air, there were no breathing differences. Blood pressure and heart rate were not different between NO ISO and 1% ISO-exposed mice breathing air. Oxygen saturation was not different between groups receiving 2% ISO, 1% ISO, or air. Breathing frequency stabilized at ~11 min of 1% ISO following 2% ISO exposure, suggesting that 11 min is the optimal time for a sample in C57BL/6J mice. Blood samples at 1% ISO and NO ISO revealed no differences in blood pH and PaCO2 in C57BL/6J mice. Overall, this method reveals similar arterial blood sampling values in awake and 1% ISO CD-1 and C57BL/6J mice exposed to air. Although this protocol may be appropriate in other mouse strains when a conscious sample is not feasible, caution is warranted first to identify breathing frequency responses at 1% ISO to tailor the protocol. NEW & NOTEWORTHY Conscious arterial blood sampling is influenced by extraneous factors and is a challenging method due to the small size of mice. Through a series of experiments, we show that arterial blood sampling with 1% isoflurane (ISO) is an alternative to awake sampling in C57BL/6J and CD-1 male mice breathing air. Monitoring breathing frequency during 1% ISO is important to the protocol and should be closely followed to confirm adequate recovery after the catheter implantation.


Subject(s)
Anesthetics, Inhalation , Blood Specimen Collection/methods , Femoral Artery/surgery , Isoflurane , Wakefulness , Animals , Blood Pressure , Heart Rate , Male , Mice, Inbred C57BL , Oximetry , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...