Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(7)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33563764

ABSTRACT

A central question in the underdoped cuprates pertains to the nature of the pseudogap ground state. A conventional metallic ground state of the pseudogap region has been argued to host quantum oscillations upon destruction of the superconducting order parameter by modest magnetic fields. Here, we use low applied measurement currents and millikelvin temperatures on ultrapure single crystals of underdoped [Formula: see text] to unearth an unconventional quantum vortex matter ground state characterized by vanishing electrical resistivity, magnetic hysteresis, and nonohmic electrical transport characteristics beyond the highest laboratory-accessible static fields. A model of the pseudogap ground state is now required to explain quantum oscillations that are hosted by the bulk quantum vortex matter state without experiencing sizable additional damping in the presence of a large maximum superconducting gap; possibilities include a pair density wave.

2.
Proc Natl Acad Sci U S A ; 113(45): 12667-12672, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791146

ABSTRACT

Strong evidence for charge-density correlation in the underdoped phase of the cuprate YBa2Cu3O y was obtained by NMR and resonant X-ray scattering. The fluctuations were found to be enhanced in strong magnetic fields. Recently, 3D charge-density-wave (CDW) formation with long-range order (LRO) was observed by X-ray diffraction in [Formula: see text] 15 T. To elucidate how the CDW transition impacts the pair condensate, we have used torque magnetization to 45 T and thermal conductivity [Formula: see text] to construct the magnetic phase diagram in untwinned crystals with hole density p = 0.11. We show that the 3D CDW transitions appear as sharp features in the susceptibility and [Formula: see text] at the fields [Formula: see text] and [Formula: see text], which define phase boundaries in agreement with spectroscopic techniques. From measurements of the melting field [Formula: see text] of the vortex solid, we obtain evidence for two vortex solid states below 8 K. At 0.5 K, the pair condensate appears to adjust to the 3D CDW by a sharp transition at 24 T between two vortex solids with very different shear moduli. At even higher H (41 T), the second vortex solid melts to a vortex liquid which survives to fields well above 41 T. de Haas-van Alphen oscillations appear at fields 24-28 T, below the lower bound for the upper critical field [Formula: see text].

SELECTION OF CITATIONS
SEARCH DETAIL
...