Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1364473, 2024.
Article in English | MEDLINE | ID: mdl-38487531

ABSTRACT

Introduction: Immune checkpoint inhibitors have made a paradigm shift in the treatment of non-small cell lung cancer (NSCLC). However, clinical response varies widely and robust predictive biomarkers for patient stratification are lacking. Here, we characterize early on-treatment proteomic changes in blood plasma to gain a better understanding of treatment response and resistance. Methods: Pre-treatment (T0) and on-treatment (T1) plasma samples were collected from 225 NSCLC patients receiving PD-1/PD-L1 inhibitor-based regimens. Plasma was profiled using aptamer-based technology to quantify approximately 7000 plasma proteins per sample. Proteins displaying significant fold changes (T1:T0) were analyzed further to identify associations with clinical outcomes using clinical benefit and overall survival as endpoints. Bioinformatic analyses of upregulated proteins were performed to determine potential cell origins and enriched biological processes. Results: The levels of 142 proteins were significantly increased in the plasma of NSCLC patients following ICI-based treatments. Soluble PD-1 exhibited the highest increase, with a positive correlation to tumor PD-L1 status, and, in the ICI monotherapy dataset, an association with improved overall survival. Bioinformatic analysis of the ICI monotherapy dataset revealed a set of 30 upregulated proteins that formed a single, highly interconnected network, including CD8A connected to ten other proteins, suggestive of T cell activation during ICI treatment. Notably, the T cell-related network was detected regardless of clinical benefit. Lastly, circulating proteins of alveolar origin were identified as potential biomarkers of limited clinical benefit, possibly due to a link with cellular stress and lung damage. Conclusions: Our study provides insights into the biological processes activated during ICI-based therapy, highlighting the potential of plasma proteomics to identify mechanisms of therapy resistance and biomarkers for outcome.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Programmed Cell Death 1 Receptor , Proteomics , Lung Neoplasms/drug therapy , Immunotherapy , Immune Checkpoint Inhibitors , Plasma
2.
Bioinformatics ; 40(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38269647

ABSTRACT

MOTIVATION: Insertions and deletions (indels) of short DNA segments, along with substitutions, are the most frequent molecular evolutionary events. Indels were shown to affect numerous macro-evolutionary processes. Because indels may span multiple positions, their impact is a product of both their rate and their length distribution. An accurate inference of indel-length distribution is important for multiple evolutionary and bioinformatics applications, most notably for alignment software. Previous studies counted the number of continuous gap characters in alignments to determine the best-fitting length distribution. However, gap-counting methods are not statistically rigorous, as gap blocks are not synonymous with indels. Furthermore, such methods rely on alignments that regularly contain errors and are biased due to the assumption of alignment methods that indels lengths follow a geometric distribution. RESULTS: We aimed to determine which indel-length distribution best characterizes alignments using statistical rigorous methodologies. To this end, we reduced the alignment bias using a machine-learning algorithm and applied an Approximate Bayesian Computation methodology for model selection. Moreover, we developed a novel method to test if current indel models provide an adequate representation of the evolutionary process. We found that the best-fitting model varies among alignments, with a Zipf length distribution fitting the vast majority of them. AVAILABILITY AND IMPLEMENTATION: The data underlying this article are available in Github, at https://github.com/elyawy/SpartaSim and https://github.com/elyawy/SpartaPipeline.


Subject(s)
Algorithms , Software , Bayes Theorem , Sequence Alignment , INDEL Mutation , Evolution, Molecular
3.
J Mol Biol ; 435(14): 168155, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37356902

ABSTRACT

Multiple sequence alignments (MSAs) are the workhorse of molecular evolution and structural biology research. From MSAs, the amino acids that are tolerated at each site during protein evolution can be inferred. However, little is known regarding the repertoire of tolerated amino acids in proteins when only a few or no sequence homologs are available, such as orphan and de novo designed proteins. Here we present EvoRator2, a deep-learning algorithm trained on over 15,000 protein structures that can predict which amino acids are tolerated at any given site, based exclusively on protein structural information mined from atomic coordinate files. We show that EvoRator2 obtained satisfying results for the prediction of position-weighted scoring matrices (PSSM). We further show that EvoRator2 obtained near state-of-the-art performance on proteins with high quality structures in predicting the effect of mutations in deep mutation scanning (DMS) experiments and that for certain DMS targets, EvoRator2 outperformed state-of-the-art methods. We also show that by combining EvoRator2's predictions with those obtained by a state-of-the-art deep-learning method that accounts for the information in the MSA, the prediction of the effect of mutation in DMS experiments was improved in terms of both accuracy and stability. EvoRator2 is designed to predict which amino-acid substitutions are tolerated in such proteins without many homologous sequences, including orphan or de novo designed proteins. We implemented our approach in the EvoRator web server (https://evorator.tau.ac.il).


Subject(s)
Amino Acid Substitution , Deep Learning , Algorithms , Amino Acids/genetics , Computational Biology/methods , Proteins/chemistry , Proteins/genetics , Protein Conformation
4.
Open Biol ; 12(12): 220223, 2022 12.
Article in English | MEDLINE | ID: mdl-36514983

ABSTRACT

Insertions and deletions (indels) of short DNA segments are common evolutionary events. Numerous studies showed that deletions occur more often than insertions in both prokaryotes and eukaryotes. It raises the question why neutral sequences are not eradicated from the genome. We suggest that this is due to a phenomenon we term border-induced selection. Accordingly, a neutral sequence is bordered between conserved regions. Deletions occurring near the borders occasionally protrude to the conserved region and are thereby subject to strong purifying selection. Thus, for short neutral sequences, an insertion bias is expected. Here, we develop a set of increasingly complex models of indel dynamics that incorporate border-induced selection. Furthermore, we show that short conserved sequences within the neutrally evolving sequence help explain: (i) the presence of very long sequences; (ii) the high variance of sequence lengths; and (iii) the possible emergence of multimodality in sequence length distributions. Finally, we fitted our models to the human intron length distribution, as introns are thought to be mostly neutral and bordered by conserved exons. We show that when accounting for the occurrence of short conserved sequences within introns, we reproduce the main features, including the presence of long introns and the multimodality of intron distribution.


Subject(s)
Evolution, Molecular , INDEL Mutation , Humans , Introns , Genome , Genomics
5.
Mol Biol Evol ; 39(11)2022 11 03.
Article in English | MEDLINE | ID: mdl-36282896

ABSTRACT

The inference of genome rearrangement events has been extensively studied, as they play a major role in molecular evolution. However, probabilistic evolutionary models that explicitly imitate the evolutionary dynamics of such events, as well as methods to infer model parameters, are yet to be fully utilized. Here, we developed a probabilistic approach to infer genome rearrangement rate parameters using an Approximate Bayesian Computation (ABC) framework. We developed two genome rearrangement models, a basic model, which accounts for genomic changes in gene order, and a more sophisticated one which also accounts for changes in chromosome number. We characterized the ABC inference accuracy using simulations and applied our methodology to both prokaryotic and eukaryotic empirical datasets. Knowledge of genome-rearrangement rates can help elucidate their role in evolution as well as help simulate genomes with evolutionary dynamics that reflect empirical genomes.


Subject(s)
Evolution, Molecular , Genome , Bayes Theorem , Computer Simulation , Genomics
6.
Mol Biol Evol ; 38(12): 5769-5781, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34469521

ABSTRACT

Insertions and deletions (indels) are common molecular evolutionary events. However, probabilistic models for indel evolution are under-developed due to their computational complexity. Here, we introduce several improvements to indel modeling: 1) While previous models for indel evolution assumed that the rates and length distributions of insertions and deletions are equal, here we propose a richer model that explicitly distinguishes between the two; 2) we introduce numerous summary statistics that allow approximate Bayesian computation-based parameter estimation; 3) we develop a method to correct for biases introduced by alignment programs, when inferring indel parameters from empirical data sets; and 4) using a model-selection scheme, we test whether the richer model better fits biological data compared with the simpler model. Our analyses suggest that both our inference scheme and the model-selection procedure achieve high accuracy on simulated data. We further demonstrate that our proposed richer model better fits a large number of empirical data sets and that, for the majority of these data sets, the deletion rate is higher than the insertion rate.


Subject(s)
Evolution, Molecular , INDEL Mutation , Bayes Theorem , Models, Statistical , Phylogeny
7.
mSystems ; 6(1)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33531410

ABSTRACT

Degradation of intracellular proteins in Gram-negative bacteria regulates various cellular processes and serves as a quality control mechanism by eliminating damaged proteins. To understand what causes the proteolytic machinery of the cell to degrade some proteins while sparing others, we employed a quantitative pulsed-SILAC (stable isotope labeling with amino acids in cell culture) method followed by mass spectrometry analysis to determine the half-lives for the proteome of exponentially growing Escherichia coli, under standard conditions. We developed a likelihood-based statistical test to find actively degraded proteins and identified dozens of fast-degrading novel proteins. Finally, we used structural, physicochemical, and protein-protein interaction network descriptors to train a machine learning classifier to discriminate fast-degrading proteins from the rest of the proteome, achieving an area under the receiver operating characteristic curve (AUC) of 0.72.IMPORTANCE Bacteria use protein degradation to control proliferation, dispose of misfolded proteins, and adapt to physiological and environmental shifts, but the factors that dictate which proteins are prone to degradation are mostly unknown. In this study, we have used a combined computational-experimental approach to explore protein degradation in E. coli We discovered that the proteome of E. coli is composed of three protein populations that are distinct in terms of stability and functionality, and we show that fast-degrading proteins can be identified using a combination of various protein properties. Our findings expand the understanding of protein degradation in bacteria and have implications for protein engineering. Moreover, as rapidly degraded proteins may play an important role in pathogenesis, our findings may help to identify new potential antibacterial drug targets.

8.
EMBO Mol Med ; 12(11): e13171, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33073919

ABSTRACT

The rapid spread of SARS-CoV-2 and its threat to health systems worldwide have led governments to take acute actions to enforce social distancing. Previous studies used complex epidemiological models to quantify the effect of lockdown policies on infection rates. However, these rely on prior assumptions or on official regulations. Here, we use country-specific reports of daily mobility from people cellular usage to model social distancing. Our data-driven model enabled the extraction of lockdown characteristics which were crossed with observed mortality rates to show that: (i) the time at which social distancing was initiated is highly correlated with the number of deaths, r2  = 0.64, while the lockdown strictness or its duration is not as informative; (ii) a delay of 7.49 days in initiating social distancing would double the number of deaths; and (iii) the immediate response has a prolonged effect on COVID-19 death toll.


Subject(s)
COVID-19/pathology , Quarantine , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , Humans , Pandemics , Physical Distancing , SARS-CoV-2/isolation & purification , Survival Rate , Time Factors
9.
Commun Biol ; 3(1): 29, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941992

ABSTRACT

Drug discovery is challenged by ineffectiveness of drugs against variable and evolving diseases, and adverse effects due to poor selectivity. We describe a robust platform which potentially addresses these limitations. The platform enables rapid discovery of DNA oligonucleotides evolved in vitro for exerting specific and selective biological responses in target cells. The process operates without a priori target knowledge (mutations, biomarkers, etc). We report the discovery of oligonucleotides with direct, selective cytotoxicity towards cell lines, as well as patient-derived solid and hematological tumors. A specific oligonucleotide termed E8, induced selective apoptosis in triple-negative breast cancer (TNBC) cells. Polyethylene glycol-modified E8 exhibited favorable biodistribution in animals, persisting in tumors up to 48-hours after injection. E8 inhibited tumors by 50% within 10 days of treatment in patient-derived xenograft mice, and was effective in ex vivo organ cultures from chemotherapy-resistant TNBC patients. These findings highlight a drug discovery model which is target-tailored and on-demand.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Oligodeoxyribonucleotides/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Base Sequence , Cell Line, Tumor , Cells, Cultured , Disease Models, Animal , Drug Discovery/methods , Drug Screening Assays, Antitumor , High-Throughput Nucleotide Sequencing , Humans , Mice , Models, Molecular , Molecular Conformation , Nucleic Acid Conformation , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/therapeutic use , Structure-Activity Relationship , Tissue Distribution , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...