Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Transl Med ; 14(652): eabl5654, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35857625

ABSTRACT

Dilated cardiomyopathy (DCM) is characterized by reduced cardiac output, as well as thinning and enlargement of left ventricular chambers. These characteristics eventually lead to heart failure. Current standards of care do not target the underlying molecular mechanisms associated with genetic forms of heart failure, driving a need to develop novel therapeutics for DCM. To identify candidate therapeutics, we developed an in vitro DCM model using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) deficient in B-cell lymphoma 2 (BCL2)-associated athanogene 3 (BAG3). With these BAG3-deficient iPSC-CMs, we identified cardioprotective drugs using a phenotypic screen and deep learning. From a library of 5500 bioactive compounds and siRNA validation, we found that inhibiting histone deacetylase 6 (HDAC6) was cardioprotective at the sarcomere level. We translated this finding to a BAG3 cardiomyocyte-knockout (BAG3cKO) mouse model of DCM, showing that inhibiting HDAC6 with two isoform-selective inhibitors (tubastatin A and a novel inhibitor TYA-018) protected heart function. In BAG3cKO and BAG3E455K mice, HDAC6 inhibitors improved left ventricular ejection fraction and reduced left ventricular diameter at diastole and systole. In BAG3cKO mice, TYA-018 protected against sarcomere damage and reduced Nppb expression. Based on integrated transcriptomics and proteomics and mitochondrial function analysis, TYA-018 also enhanced energetics in these mice by increasing expression of targets associated with fatty acid metabolism, protein metabolism, and oxidative phosphorylation. Our results demonstrate the power of combining iPSC-CMs with phenotypic screening and deep learning to accelerate drug discovery, and they support developing novel therapies that address underlying mechanisms associated with heart disease.


Subject(s)
Cardiomyopathy, Dilated , Deep Learning , Heart Failure , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/drug therapy , Cardiomyopathy, Dilated/genetics , Disease Models, Animal , Heart Failure/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Mice , Myocytes, Cardiac/metabolism , Stroke Volume , Ventricular Function, Left
2.
Elife ; 102021 08 02.
Article in English | MEDLINE | ID: mdl-34338636

ABSTRACT

Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.


Subject(s)
Cardiotoxicity/etiology , Deep Learning , Heart/drug effects , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Drug Evaluation, Preclinical/methods
3.
Stem Cell Reports ; 4(4): 621-31, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25801505

ABSTRACT

We present a non-invasive method to characterize the function of pluripotent stem-cell-derived cardiomyocytes based on video microscopy and image analysis. The platform, called Pulse, generates automated measurements of beating frequency, beat duration, amplitude, and beat-to-beat variation based on motion analysis of phase-contrast images captured at a fast frame rate. Using Pulse, we demonstrate recapitulation of drug effects in stem-cell-derived cardiomyocytes without the use of exogenous labels and show that our platform can be used for high-throughput cardiotoxicity drug screening and studying physiologically relevant phenotypes.


Subject(s)
Cell Differentiation , Drug Evaluation, Preclinical/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Stem Cells/cytology , Calcium/metabolism , Calcium Signaling/drug effects , Cardiotoxicity , Cell Culture Techniques , High-Throughput Screening Assays , Humans , Microscopy, Video , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques
4.
Fertil Steril ; 100(2): 412-9.e5, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23721712

ABSTRACT

OBJECTIVE: To assess the first computer-automated platform for time-lapse image analysis and blastocyst prediction and to determine how the screening information may assist embryologists in day 3 (D3) embryo selection. DESIGN: Prospective, multicenter, cohort study. SETTING: Five IVF clinics in the United States. PATIENT(S): One hundred sixty women ≥ 18 years of age undergoing fresh IVF treatment with basal antral follicle count ≥ 8, basal FSH <10 IU/mL, and ≥ 8 normally fertilized oocytes. INTERVENTION(S): A noninvasive test combining time-lapse image analysis with the cell-tracking software, Eeva (Early Embryo Viability Assessment), was used to measure early embryo development and generate usable blastocyst predictions by D3. MAIN OUTCOME MEASURE(S): Improvement in the ability of experienced embryologists to select which embryos are likely to develop to usable blastocysts using D3 morphology alone, compared with morphology plus Eeva. RESULT(S): Experienced embryologists using Eeva in combination with D3 morphology significantly improved their ability to identify embryos that would reach the usable blastocyst stage (specificity for each of three embryologists using morphology vs. morphology plus Eeva: 59.7% vs. 86.3%, 41.9% vs. 84.0%, 79.5% vs. 86.6%). Adjunctive use of morphology plus Eeva improved embryo selection by enabling embryologists to better discriminate which embryos would be unlikely to develop to blastocyst and was particularly beneficial for improving selection among good-morphology embryos. Adjunctive use of morphology plus Eeva also reduced interindividual variability in embryo selection. CONCLUSION(S): Previous studies have shown improved implantation rates for blastocyst transfer compared with cleavage-stage transfer. Addition of Eeva to the current embryo grading process may improve the success rates of cleavage-stage ETs.


Subject(s)
Cleavage Stage, Ovum/cytology , Embryo, Mammalian/cytology , Time-Lapse Imaging/methods , Cell Separation , Cell Shape , Cleavage Stage, Ovum/physiology , Cohort Studies , Embryo Transfer/methods , Embryo Transfer/standards , Female , Fertilization in Vitro/standards , Humans , Image Processing, Computer-Assisted , Male , Models, Biological , Pregnancy , Prospective Studies , Quality Improvement , Time Factors
5.
Nat Commun ; 3: 1251, 2012.
Article in English | MEDLINE | ID: mdl-23212380

ABSTRACT

Previous studies have demonstrated that aneuploidy in human embryos is surprisingly frequent with 50-80% of cleavage-stage human embryos carrying an abnormal chromosome number. Here we combine non-invasive time-lapse imaging with karyotypic reconstruction of all blastomeres in four-cell human embryos to address the hypothesis that blastomere behaviour may reflect ploidy during the first two cleavage divisions. We demonstrate that precise cell cycle parameter timing is observed in all euploid embryos to the four-cell stage, whereas only 30% of aneuploid embryos exhibit parameter values within normal timing windows. Further, we observe that the generation of human embryonic aneuploidy is complex with contribution from chromosome-containing fragments/micronuclei that frequently emerge and may persist or become reabsorbed during interphase. These findings suggest that cell cycle and fragmentation parameters of individual blastomeres are diagnostic of ploidy, amenable to automated tracking algorithms, and likely of clinical relevance in reducing transfer of embryos prone to miscarriage.


Subject(s)
Blastomeres/physiology , Ploidies , Aneuploidy , Blastomeres/cytology , Cell Cycle/physiology , Cell Division/physiology , Chromosome Disorders/genetics , Chromosomes, Human/genetics , Chromosomes, Human/physiology , Humans , Meiosis/physiology , Micronuclei, Chromosome-Defective/embryology , Mosaicism
6.
IEEE Trans Biomed Eng ; 58(1): 159-71, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20934939

ABSTRACT

Recent advances in optical imaging have led to the development of miniature microscopes that can be brought to the patient for visualizing tissue structures in vivo. These devices have the potential to revolutionize health care by replacing tissue biopsy with in vivo pathology. One of the primary limitations of these microscopes, however, is that the constrained field of view can make image interpretation and navigation difficult. In this paper, we show that image mosaicing can be a powerful tool for widening the field of view and creating image maps of microanatomical structures. First, we present an efficient algorithm for pairwise image mosaicing that can be implemented in real time. Then, we address two of the main challenges associated with image mosaicing in medical applications: cumulative image registration errors and scene deformation. To deal with cumulative errors, we present a global alignment algorithm that draws upon techniques commonly used in probabilistic robotics. To accommodate scene deformation, we present a local alignment algorithm that incorporates deformable surface models into the mosaicing framework. These algorithms are demonstrated on image sequences acquired in vivo with various imaging devices including a hand-held dual-axes confocal microscope, a miniature two-photon microscope, and a commercially available confocal microendoscope.


Subject(s)
Endoscopes , Image Processing, Computer-Assisted/methods , Microscopy, Confocal , Algorithms , Animals , Brain/anatomy & histology , Brain/blood supply , Endoscopy/methods , Hand , Humans , Mice , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Miniaturization , Robotics/instrumentation , Skin/anatomy & histology
7.
Nat Biotechnol ; 28(10): 1115-21, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20890283

ABSTRACT

We report studies of preimplantation human embryo development that correlate time-lapse image analysis and gene expression profiling. By examining a large set of zygotes from in vitro fertilization (IVF), we find that success in progression to the blastocyst stage can be predicted with >93% sensitivity and specificity by measuring three dynamic, noninvasive imaging parameters by day 2 after fertilization, before embryonic genome activation (EGA). These parameters can be reliably monitored by automated image analysis, confirming that successful development follows a set of carefully orchestrated and predictable events. Moreover, we show that imaging phenotypes reflect molecular programs of the embryo and of individual blastomeres. Single-cell gene expression analysis reveals that blastomeres develop cell autonomously, with some cells advancing to EGA and others arresting. These studies indicate that success and failure in human embryo development is largely determined before EGA. Our methods and algorithms may provide an approach for early diagnosis of embryo potential in assisted reproduction.


Subject(s)
Blastocyst/metabolism , Embryonic Development/genetics , Genome, Human/genetics , Imaging, Three-Dimensional/methods , Algorithms , Automation , Biomarkers/metabolism , Blastocyst/pathology , Cytokinesis/genetics , Gene Expression Regulation, Developmental , Humans , Mitosis/genetics , Models, Genetic , Reproducibility of Results , Time Factors
8.
Stud Health Technol Inform ; 125: 304-9, 2007.
Article in English | MEDLINE | ID: mdl-17377290

ABSTRACT

In this paper we describe the development of a robotically-assisted image mosaicing system for medical applications. The processing occurs in real-time due to a fast initial image alignment provided by robotic position sensing. Near-field imaging, defined by relatively large camera motion, requires translations as well as pan and tilt orientations to be measured. To capture these measurements we use 5-d.o.f. sensing along with a hand-eye calibration to account for sensor offset. This sensor-based approach speeds up the mosaicing, eliminates cumulative errors, and readily handles arbitrary camera motions. Our results have produced visually satisfactory mosaics on a dental model but can be extended to other medical images.


Subject(s)
Computer Simulation , Diagnostic Imaging , Image Processing, Computer-Assisted/methods , Robotics , Dentistry , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...