Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842069

ABSTRACT

The adaptive potential of plastic phenotypes relies on combined developmental responses. We investigated how manipulation of developmental conditions related to foraging mode in the fish Megaleporinus macrocephalus induces plastic responses at different levels: 1) functional modularity of skull bones, 2) biomechanical properties of the chondrocranium using Finite Element Models, 3) bmp4 expression levels, used as a proxy for molecular pathways involved in bone responses to mechanical load. We identified new modules in experimental groups, suggesting increased integration in specific head bone elements associated with the development of subterminal and upturned mouths, which are major features of Megaleporinus plastic morphotypes released in the lab. Plastic responses in head shape involved differences in the magnitude of mechanical stress, which seem restricted to certain chondrocranium regions. Three bones represent a 'mechanical unit' related to changes in mouth position induced by foraging mode, suggesting that functional modularity might be enhanced by the way specific regions respond to mechanical load. Differences in bmp4 expression levels between plastic morphotypes indicate associations between molecular signaling pathways and biomechanical responses to load. Our results offer a multilevel perspective of epigenetic factors involved in plastic responses, expanding our knowledge about mechanisms of developmental plasticity that originate novel complex phenotypes.

2.
J Exp Zool B Mol Dev Evol ; 336(7): 576-584, 2021 11.
Article in English | MEDLINE | ID: mdl-34496131

ABSTRACT

Studies in Evo-Devo benefit from the use of a variety of organisms, as comparative approaches provide a better understanding of Biodiversity and Evolution. Standardized protocols to incubate eggs and manipulate embryo development enable postulation of additional species as suitable biological systems for research in the field. In the past decades, vertebrate lineages such as Squamata (lizards, snakes, and amphisbaenians) emerged as crucial study systems for addressing topics as diverse as phenotypic evolution and climate change. However, protocols for maintaining gravid females and incubating eggs in the lab under experimental conditions are available to only a few squamate species. This resource article presents a simple incubation guide that standardizes conditions to maintain embryos of Tropidurus catalanensis (Squamata: Tropiduridae) under different experimental conditions, manipulating relevant environmental factors like temperature and humidity. We identified associated effects relating the egg incubation condition to developmental stage, incubation time, hatching success, and resulting morphotypes. Temperature and humidity play a key role in development and require attention when establishing the experimental design. Current literature comprises information for Tropidurus lizards that ponders how general in Squamata are the ecomorphs originally described for Anolis. Studies evaluating phenotypic effects of developmental environments suggest plasticity in some of the traits that characterize the ecomorphological associations described for this family. We expect that this incubation guide encourages future studies using Tropidurus lizards to address Evo-Devo questions.


Subject(s)
Lizards , Ovum , Animals , Laboratories
3.
Evolution ; 75(5): 1170-1188, 2021 05.
Article in English | MEDLINE | ID: mdl-33783852

ABSTRACT

The establishment of a given phenotype is only one expression from a range of hidden developmental possibilities. Developmental plasticity at hidden reaction norms might elicit phenotypic diversification under new developmental environments. Current discussion benefits from empirical analyses that integrate multiple environmental stimuli to evaluate how plastic responses may shape phenotypic variation. We raised Megaleporinus macrocephalus fish in different environmental settings to address contributions of developmental plasticity for emergence of new phenotypes and subsequent morphospace diversification. Plastic morphotypes were evaluated at two complementary scales, the M. macrocephalus morphospace and the higher taxonomic level of Anostomidae family. Morphospace analyses demonstrated that developmental plasticity quickly releases distinct head morphotypes that were hidden in the parental monomorphic population. Plastic morphotypes occupied discrete and previously unfilled morphospace regions, a result obtained from comparisons with a control population and in analyses including several Anostomidae species. Plastic responses involved adjustments in shape and relative position of head bonesets, and fish raised under specific environmental combinations rescued phenotypic patterns described for different genera. Therefore, developmental plasticity possibly contributes to adaptive radiation in Anostomidae. Results illustrate how plastic responses enable morphospace diversification and contribute to evolution.


Subject(s)
Adaptation, Physiological , Characiformes/growth & development , Ecosystem , Animals , Bone Development , Characiformes/anatomy & histology , Characiformes/genetics , Head/anatomy & histology
4.
J Exp Zool B Mol Dev Evol ; 332(7): 238-244, 2019 11.
Article in English | MEDLINE | ID: mdl-31602780

ABSTRACT

Complex phenotypes result from developmental processes integrating genetic, epigenetic, and environmental information. Although changing environments combine several signals that may induce multitrait plastic responses, literature often decodes developmental plasticity into single trait variation as a function of isolated environmental signals. To address the multivariate nature of developmental plasticity, we evaluated how different combinations of environmental signals influence the development of morphological and behavioral traits. We raised Megaleporinus macrocephalus (Anostomidae) in four different developmental environments, and found that foraging position and structural complexity during development induced different morphotypes, which overlapped with behavioral patterns. Foraging position induced distinct patterns of mouth and fin positioning and overall body shape, which were accentuated by structural complexity. Moreover, fish most often chose conditions similar to their developmental environments. Combined signals during development, therefore, revealed environment-specific phenotypic patterns associating morphology and behavior. Such results endorse the ability of developmental processes to influence the variation present in natural populations. Implications of addressing the multivariate essence of developmental plasticity transcend the evolutionary theory and inspire applications in several fields.


Subject(s)
Adaptation, Physiological , Characiformes/growth & development , Ecosystem , Animal Fins/anatomy & histology , Animal Fins/growth & development , Animals , Appetitive Behavior , Characiformes/anatomy & histology , Characiformes/physiology , Mouth/anatomy & histology , Mouth/growth & development
5.
BMC Evol Biol ; 17(1): 175, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28768472

ABSTRACT

BACKGROUND: Developmental associations often explain phenotypic integration. The intersected hormonal regulation of ontogenetic processes fosters predictions of steroid-mediated phenotypic integration among sexually dimorphic traits, a statement defied by associations between classical dimorphism predictors (e.g. body size) and traits that apparently lack sex-specific functions (e.g. ratios between the lengths of Digits II and IV - 2D:4D). Developmental bases of female-biased 2D:4D have been identified, but these remain unclear for taxa presenting male-biased 2D:4D (e.g. anura). Here we propose two alternative hypotheses to investigate evolution of male-biased 2D:4D associated with sexually dimorphic body size using Leptodactylus frogs: I)'hypothesis of sex-specific digit responses' - Digit IV would be reactive to testosterone but exhibit responses in the opposite direction of those observed in female-biased 2D:4D lineages, so that Digit IV turns shorter in males; II) 'hypothesis of identity of the dimorphic digit'- Digit II would be the dimorphic digit. RESULTS: We compiled the following databases using Leptodactylus frogs: 1) adults of two species from natural populations and 2) testosterone-treated L. fuscus at post-metamorphic stage. Studied traits seem monomorphic in L. fuscus; L. podicipinus exhibits male-biased 2D:4D. When present, 2D:4D dimorphism was male-biased and associated with dimorphic body size; sex differences resided on Digit II instead of IV, corroborating our 'hypothesis of identity of the dimorphic digit'. Developmental steroid roles were validated: testosterone-treated L. fuscus frogs were smaller and exhibited masculinized 2D:4D, and Digit II was the digit that responded to testosterone. CONCLUSION: We propose a model where evolution of sexual dimorphism in 2D:4D first originates from the advent, in a given digit, of increased tissue sensitivity to steroids. Phenotypic integration with other sexually dimorphic traits would then occur through multi-trait hormonal effects during development. Such process of phenotypic integration seems fitness-independent in its origin and might explain several cases of steroid-mediated integration among sexually dimorphic traits.


Subject(s)
Anura/anatomy & histology , Anura/growth & development , Body Size , Extremities/anatomy & histology , Larva/growth & development , Testosterone/metabolism , Animals , Anura/metabolism , Extremities/physiology , Female , Humans , Male , Phenotype , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...