Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 31(44): 445701, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-32668415

ABSTRACT

Growing ultrathin nanogranular (NG) metallic films with continuously varying thickness is of great interest for studying regions of criticality and scaling behaviors in the vicinity of quantum phase transitions. In the present work, an ultrathin gold plasmonic NG film was grown on a sapphire substrate by RF magnetron sputtering with an intentional deposition gradient to create a linearly variable thickness ranging from 5 to 13 nm. The aim is to accurately study the electronic phase transition from the quantum tunneling regime to the metallic conduction one. The film structural characterization was performed by means of high-resolution transmission electron microscopy, atomic force microscopy, as well as x-ray diffraction and reflectivity techniques, which indicate the Volmer-Weber film growth mode. The optical and electrical measurements show a transition from dielectric-isolated gold NPs towards a continuous metallic network when t becomes larger than a critical value of tM = 7.8 nm. Our results show that the onset of the percolation region occurs when a localized surface plasma resonance transforms to display a Drude component, indicative of free charge carriers. We demonstrate that, by using a continuously varying thickness, criteria for metallicity can be unambiguously identified. The onset of metallicity is clearly distinguished by the Drude damping factor and by discontinuities in the plasma frequencies as functions of thickness.

2.
Sci Rep ; 5: 13770, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26345729

ABSTRACT

In ferroelectrics, manifestation of a strong electromechanical coupling is attributed to both engineered domain morphology and phase transformations. However, realization of large sustainable and reversible strains and polarization rotation has been limited by fatigue, nonlinearity and hysteresis losses. Here, we demonstrate that large strain and polarization rotation can be generated for over 40 × 10(6) cycles with little fatigue by realization of a reversible ferroelectric-ferroelectric phase transition in [011] cut Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) relaxor ferroelectric single crystal. Direct tuning of this effect through combination of stress and applied electric field, confirmed both macroscopically and microscopically with x-ray and Raman scattering, reveals the local symmetry while sweeping through the transition with a low applied electric field (<0.2 MV/m) under mechanical stress. The observed change in local symmetry as determined by x-ray scattering confirms a proposed polarization rotation mechanism corresponding to a transition between rhombohedral and orthorhombic phases. These results shed more light onto the nature of this reversible transformation between two ferroelectric phases and advance towards the development of a wide range of ferroic and multiferroic devices.

3.
J Nanosci Nanotechnol ; 11(4): 3405-13, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21776717

ABSTRACT

Synthesis of uniform silica shell over Co3O4 nanoparticles was carried out using the colloidal solutions of Tergitol and cyclohexane. The shell could be controlled to a thickness of up to 20 nm by varying different parameters such as the amount of tetraethylorthosilicate, concentration of Co3O4 nanoparticles, reaction time and the presence of water and 1-octanol. Control of the amount of water (required for hydrolysis) appears to be the key factor for controlling the shell thickness. The methodology used is suitable to form shell over nanoparticles (present in powder form; synthesized at high temperature) which have high degree of agglomeration. Hollow shells of silica were obtained by the dissolution of the oxide core of Co3O4@SiO2 core-shell nanostructures. The composition of these core-shell nanostructures was confirmed by high-resolution transmission electron microscopy and elemental mapping by energy dispersive X-ray analysis. The hollow shells were characterized by using TEM, EDX and IR. Electron paramagnetic resonance studies of the core-shell nanostructures indicate the presence of free radicals on silica shell due to the presence of dangling bonds in the silica. Increase in the magnetic susceptibility was observed for these core-shell nanostructures.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Oxides/chemical synthesis , Silicon Dioxide/chemistry , Cobalt , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
4.
Inorg Chem ; 48(24): 11660-76, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-19938871

ABSTRACT

Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co(2)(C(8)H(5)NO(4))(2)(C(4)H(4)N(2))(H(2)O)(2)].3H(2)O (I), [Ni(2)(C(8)H(5)NO(4))(2)(C(4)H(4)N(2))(H(2)O)(2)].3H(2)O (II), [Co(2)(H(2)O)(mu(3)-OH)(2)(C(8)H(5)NO(4))] (III), and [Ni(2)(H(2)O)(mu(3)-OH)(2)(C(8)H(5)NO(4))] (IV). Compounds I and II are isostructural, having anion-deficient CdCl(2) related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M-O(H)-M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating-cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M(2+) (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV-vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.


Subject(s)
Amino Acids/chemistry , Cobalt/chemistry , Magnetics , Nickel/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Phthalic Acids/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure
5.
Phys Med Biol ; 52(5): 1295-301, 2007 Mar 07.
Article in English | MEDLINE | ID: mdl-17301455

ABSTRACT

We have used the near-field scanning microwave microscopy (NSMM) technique in the 1-10 GHz range to monitor the free water content of skin. The water content is interpreted from the measured dielectric properties of the epidermis. The finger skin was first hydrated by soaking in water at 37 degrees C for 30 min followed by monitoring of water content as the free water evaporated under ambient conditions. The same technique has also been employed to image a 1 cm x 1 cm sample of chicken skin. It has been shown that variations exist in the resonant frequencies and quality factors of tissue under varying physical parameters. The samples analysed were as-received and thermally dehydrated or damaged chicken tissue samples. We contrast between the dielectric properties with the optical images. We also discuss possible application of our imaging technique in clinical monitoring of the wound healing process.


Subject(s)
Body Water/metabolism , Burns/metabolism , Burns/pathology , Image Interpretation, Computer-Assisted/methods , Microwaves , Skin/metabolism , Skin/pathology , Animals , Chickens , Humans , In Vitro Techniques , Skin/injuries , Skin Absorption
6.
Nat Mater ; 3(10): 709-14, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15448682

ABSTRACT

The recent discovery of ferromagnetism above room temperature in low-temperature-processed MnO(2)-ZnO has generated significant interest. Using suitably designed bulk and thin-film studies, we demonstrate that the ferromagnetism in this system originates in a metastable phase rather than by carrier-induced interaction between separated Mn atoms in ZnO. The ferromagnetism persists up to approximately 980 K, and further heating transforms the metastable phase and kills the ferromagnetism. By studying the interface diffusion and reaction between thin-film bilayers of Mn and Zn oxides, we show that a uniform solution of Mn in ZnO does not form under low-temperature processing. Instead, a metastable ferromagnetic phase develops by Zn diffusion into the Mn oxide. Direct low-temperature film growth of Zn-incorporated Mn oxide by pulsed laser deposition shows ferromagnetism at low Zn concentration for an optimum oxygen growth pressure. Our results strongly suggest that the observed ferromagnetic phase is oxygen-vacancy-stabilized Mn(2-x)Zn(x)O(3-delta.).


Subject(s)
Magnetics , Manganese/chemistry , Zinc Oxide/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Spectrum Analysis , Temperature , X-Ray Diffraction
7.
Nat Mater ; 3(8): 533-8, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15273743

ABSTRACT

Arrays of perpendicular ferromagnetic nanowires have recently attracted considerable interest for their potential use in many areas of advanced nanotechnology. We report a simple approach to create self-assembled nanowires of alpha-Fe through the decomposition of a suitably chosen perovskite. We illustrate the principle behind this approach using the reaction 2La(0.5)Sr(0.5)FeO(3) --> LaSrFeO(4) + Fe + O(2) that occurs during the deposition of La(0.5)Sr(0.5)FeO(3) under reducing conditions. This leads to the spontaneous formation of an array of single-crystalline alpha-Fe nanowires embedded in LaSrFeO(4) matrix, which grow perpendicular to the substrate and span the entire film thickness. The diameter and spacing of the nanowires are controlled directly by deposition temperature. The nanowires show uniaxial anisotropy normal to the film plane and magnetization close to that of bulk alpha-Fe. The high magnetization and sizable coercivity of the nanowires make them desirable for high-density data storage and other magnetic-device applications.


Subject(s)
Crystallization/methods , Electric Wiring , Iron/chemistry , Materials Testing/methods , Nanotechnology/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Crystallography/methods , Ferric Compounds/chemistry , Manufactured Materials , Metallurgy/methods , Molecular Conformation , Semiconductors , Surface Properties , Temperature
8.
Inorg Chem ; 43(6): 1857-64, 2004 Mar 22.
Article in English | MEDLINE | ID: mdl-15018504

ABSTRACT

We describe the synthesis of two new quadruple perovskites, Sr(2)La(2)CuTi(3)O(12) (I) and Ca(2)La(2)CuTi(3)O(12) (II), by solid-state metathesis reaction between K(2)La(2)Ti(3)O(10) and A(2)CuO(2)Cl(2) (A = Sr, Ca). I is formed at 920 degrees C/12 h, and II, at 750 degrees C/24 h. Both the oxides crystallize in a tetragonal (P4/mmm) quadruple perovskite structure (a = 3.9098(2) and c = 15.794(1) A for I; a = 3.8729(5) and c = 15.689(2) A for II). We have determined the structures of I and II by Rietveld refinement of powder XRD data. The structure consists of perovskite-like octahedral CuO(4/2)O(2/2) sheets alternating with triple octahedral Ti(3)O(18/2) sheets along the c-direction. The refinement shows La/A disorder but no Cu/Ti disorder in the structure. The new cuprates show low magnetization (0.0065 micro(B) for I and 0.0033 micro(B) for II) suggesting that the Cu(II) spins are in an antiferromagnetically ordered state. Both I and II transform at high temperatures to 3D perovskites where La/Sr and Cu/Ti are disordered, suggesting that I and II are metastable phases having been formed in the low-temperature metathesis reaction. Interestingly, the reaction between K(2)La(2)Ti(3)O(10) and Ca(2)CuO(2)Cl(2) follows a different route at 650 degrees C, K(2)La(2)Ti(3)O(10) + Ca(2)CuO(2)Cl(2) --> CaLa(2)Ti(3)O(10) + CaCuO(2) + 2KCl, revealing multiple reaction pathways for metathesis reactions.

9.
Science ; 303(5658): 661-3, 2004 Jan 30.
Article in English | MEDLINE | ID: mdl-14752158

ABSTRACT

We report on the coupling between ferroelectric and magnetic order parameters in a nanostructured BaTiO3-CoFe2O4 ferroelectromagnet. This facilitates the interconversion of energies stored in electric and magnetic fields and plays an important role in many devices, including transducers, field sensors, etc. Such nanostructures were deposited on single-crystal SrTiO3 (001) substrates by pulsed laser deposition from a single Ba-Ti-Co-Fe-oxide target. The films are epitaxial in-plane as well as out-of-plane with self-assembled hexagonal arrays of CoFe2O4 nanopillars embedded in a BaTiO3 matrix. The CoFe2O4 nanopillars have uniform size and average spacing of 20 to 30 nanometers. Temperature-dependent magnetic measurements illustrate the coupling between the two order parameters, which is manifested as a change in magnetization at the ferroelectric Curie temperature. Thermodynamic analyses show that the magnetoelectric coupling in such a nanostructure can be understood on the basis of the strong elastic interactions between the two phases.

10.
Phys Rev Lett ; 91(7): 077205, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12935053

ABSTRACT

The occurrence of room temperature ferromagnetism is demonstrated in pulsed laser deposited thin films of Sn(1-x)Co(x)O(2-delta) (x<0.3). Interestingly, films of Sn(0.95)Co(0.05)O(2-delta) grown on R-plane sapphire not only exhibit ferromagnetism with a Curie temperature close to 650 K, but also a giant magnetic moment of 7.5+/-0.5 micro(B)/Co, not yet reported in any diluted magnetic semiconductor system. The films are semiconducting and optically highly transparent.

11.
Nat Mater ; 2(3): 180-4, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12612676

ABSTRACT

Exploration of new ferroic (ferroelectric, ferromagnetic or ferroelastic) materials continues to be a central theme in condensed matter physics and to drive advances in key areas of technology. Here, using thin-film composition spreads, we have mapped the functional phase diagram of the Ni-Mn-Ga system whose Heusler composition Ni(2)MnGa is a well known ferromagnetic shape-memory alloy. A characterization technique that allows detection of martensitic transitions by visual inspection was combined with quantitative magnetization mapping using scanning SQUID (superconducting quantum interference device) microscopy. We find that a large, previously unexplored region outside the Heusler composition contains reversible martensites that are also ferromagnetic. A clear relationship between magnetization and the martensitic transition temperature is observed, revealing a strong thermodynamical coupling between magnetism and martensitic instability across a large fraction of the phase diagram.


Subject(s)
Alloys/analysis , Iron/chemistry , Magnetics , Crystallography, X-Ray , Dental Alloys/chemistry , Gallium/chemistry , Manganese/chemistry , Nickel/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...