Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 174: 113132, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34863070

ABSTRACT

Contaminant concentrations in filter-feeding shellfish may indicate the health of coastal waters and consumption risks. Widespread expansion of the Pacific oyster (Crassostrea gigas) and its popularity as food make it a useful sentinel. We surveyed intertidal Pacific oysters in San Diego Bay, California for contaminants during summer 2018 and winter 2019. We compared contaminants in Pacific oyster to California mussel from California's State Mussel Watch Program (1993-2003) and human consumption thresholds. Contaminants such as neonicotinoid and chlorinated pesticides, selenium, and several metals were higher in Pacific oysters in summer, while PBDEs, benzylbutyl phthalate, and plastics were higher in winter. Contaminant levels were generally lower in Pacific oyster than mussel except for copper and zinc. Bay-wide PCB concentrations in oysters exceeded thresholds but individual samples (locations) also met or surpassed chlordane, PCB and PAH thresholds. Monitoring and risk assessments that consider species' biology, season, location, effects of multiple contaminants, and human consumption patterns will contribute to more effective consumption guidelines.


Subject(s)
Crassostrea , Pesticides , Water Pollutants, Chemical , Animals , Bays , Environmental Monitoring , Humans , Pesticides/analysis , Water Pollutants, Chemical/analysis
2.
Mar Pollut Bull ; 128: 585-592, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29571410

ABSTRACT

While the California spiny lobster (Panulirus interruptus) is an important commercial and recreational fishery species in California, there is a lack of data on bioaccumulation for the species. This study examined pollutant tissue concentrations in lobsters from San Diego Bay, California. Observed lobster pollutant tissue concentrations in tail muscle were compared to State of California pollutant advisory levels. Concentrations were then used to conduct risk assessment using catch data from the California Department of Fish and Wildlife. Study results found little bioaccumulation of organic pollutants in tail tissue, likely due to low observed lipids. Mercury was present, predominantly in methyl form, at concentrations above advisory levels. Recreational catch data for San Diego Bay showed increased non-cancer risk for fishers at the 90th percentile or greater of reported annual catch. Further studies should focus on non-tail tissues, as exploratory whole lobster samples (n = 2) showed elevated organic pollutants and metals.


Subject(s)
Bays/chemistry , Food Contamination/analysis , Methylmercury Compounds/analysis , Palinuridae/chemistry , Seafood/analysis , Water Pollutants, Chemical/analysis , Animals , California , Humans , Palinuridae/metabolism , Risk Assessment
3.
PeerJ ; 1: e213, 2013.
Article in English | MEDLINE | ID: mdl-24282672

ABSTRACT

The spotted sand bass (Paralabrax maculatofasciatus) is an important recreational sport and subsistence food fish within San Diego Bay, a large industrialized harbor in San Diego, California. Despite this importance, few studies examining the species life history relative to pollutant tissue concentrations and the consumptive fishery exist. This study utilized data from three independent spotted sand bass studies from 1989 to 2002 to investigate PCB, DDT, and mercury tissue concentrations relative to spotted sand bass age and growth in San Diego Bay, with subsequent comparisons to published pollutant advisory levels and fishery regulations for recreational and subsistence consumption of the species. Subsequent analysis focused on examining temporal and spatial differences for different regions of San Diego Bay. Study results for growth confirmed previous work, finding the species to exhibit highly asymptotic growth, making tissue pollutant concentrations at initial take size difficult if not impossible to predict. This was corroborated by independent tissue concentration results for mercury, which found no relationship between fish size and pollutant bioaccumulation observed. However, a positive though highly variable relationship was observed between fish size and PCB tissue concentration. Despite these findings, a significant proportion of fish exhibited pollutant levels above recommended state recreational angler consumption advisory levels for PCBs and mercury, especially for fish above the minimum take size, making the necessity of at-size predictions less critical. Lastly, no difference in tissue concentration was found temporally or spatially within San Diego Bay.

SELECTION OF CITATIONS
SEARCH DETAIL
...