Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500523

ABSTRACT

Green chemistry places an emphasis on safer chemicals, waste reduction, and efficiency. Processes should be optimized with green chemistry at the forefront of decision making, embedded into research at the earliest stage. To assist in this endeavor, we present a spreadsheet that can be used to interpret reaction kinetics via Variable Time Normalization Analysis (VTNA), understand solvent effects with linear solvation energy relationships (LSER), and calculate solvent greenness. With this information, new reaction conditions can be explored in silico, calculating product conversions and green chemistry metrics prior to experiments. The application of this tool was validated with literature case studies. Reaction performance was predicted and then confirmed experimentally for examples of aza-Michael addition, Michael addition, and an amidation. The combined analytical package presented herein permits a thorough examination of chemical reactions, so that the variables that control reaction chemistry can be understood, optimized, and made greener for research and education purposes.


Subject(s)
Green Chemistry Technology , Solvents
2.
J AOAC Int ; 87(5): 1179-88, 2004.
Article in English | MEDLINE | ID: mdl-15493676

ABSTRACT

The aim of the present study was to provide the official wine control authorities with an internationally validated method for the determination of 3-methoxy-1,2-propanediol (3-MPD) and cyclic diglycerols (CycDs)-both of which are recognized as impurities of technical glycerol-in different types of wine. Because glycerol gives a sweet flavor to wine and contributes to its full-body taste, an economic incentive is to add glycerol to a wine to mask its poor quality. Furthermore, it is known that glycerol, depending on whether it is produced from triglycerides or petrochemicals, may contain considerable amounts of 3-MPD in the first case or CycDs in the second. However, because these compounds are not natural wine components, it is possible to detect glycerol added to wine illegally by determining the above-mentioned by-products. To this end, one of the published methods was adopted, modified, and tested in a collaborative study. The method is based on gas chromatographic/mass spectrometric analysis of diethyl ether extracts after salting out with potassium carbonate. The interlaboratory study for the determination of 3-MPD and CycDs in wine was performed in 11 laboratories in 4 countries. Wine samples were prepared and sent to participants as 5 blind duplicate test materials and 1 single test material. The concentrations covered ranges of 0.1-0.8 mg/L for 3-MPD and 0.5-1.5 mg/L for CycDs. The precision of the method was within the range predicted by the Horwitz equation. HORRAT values obtained for 3-MPD ranged from 0.8 to 1.7, and those obtained for CycDs ranged from 0.9 to 1.3. Average recoveries were 104 and 109%, respectively.


Subject(s)
Diglycerides/analysis , Glyceryl Ethers/analysis , Wine/analysis , Gas Chromatography-Mass Spectrometry
3.
J Agric Food Chem ; 51(7): 1801-6, 2003 Mar 26.
Article in English | MEDLINE | ID: mdl-12643633

ABSTRACT

An improved procedure for determining (13)C and (2)H isotope ratios, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has been developed for identifying the addition of low cost commercial sugar syrups to apple juices and related products. Isotopic techniques are commonly used to identify the addition of low cost sugars to fruit juices and are difficult to circumvent as it is not economically viable to change the isotopic ratios of the sugars. The procedure utilizes the derivative hexamethylenetetramine, which is produced through chemical transformation of a sugar degradation product and provides position-specific (13)C and (2)H ratios that relate to the parent sugar molecule. The new procedure has advantages over methods using nitro-sugar derivatives in terms of analysis time and sensitivity. The differences between the delta(2)H per thousand and delta(13)C per thousand values of the 100 authentic apple juices and beet and cane commercial sugar syrups permit their addition to be reliably detected.


Subject(s)
Beverages/analysis , Carbohydrates/analysis , Fructose/chemistry , Fruit/chemistry , Malus/chemistry , Methenamine/analysis , Carbon Isotopes/analysis , Deuterium/analysis , Gas Chromatography-Mass Spectrometry/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...