Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 107(8): 2664-2672, 2019 11.
Article in English | MEDLINE | ID: mdl-30860665

ABSTRACT

Biologic grafts used in hernia repair undergo rapid cellular infiltration and remodeling, but their premature degradation often results in hernia recurrence. We hypothesize that a temporary barrier that prevents infiltration of acute inflammatory cells into the graft during the initial 4 weeks of implantation could mitigate graft degradation. The purpose of this study is to design tyramine-substituted hyaluronan (THA) hydrogel coatings with tunable degradation properties, as a means to develop a resorbable barrier for human acellular dermis grafts (HADM). THA plugs prepared at different cross-linking densities, by varying cross-linking agent concentration (0.0001-0.0075% H2 O2 ), demonstrated varying rates of in vitro degradation (25 U/mL hyaluronidase, 48 h). Based on these results, HADM grafts were coated with THA at three cross-linking densities (0.0001%, 0.00075%, and 0.003% H2 O2 ) and THA coating degradation was evaluated in vitro (25 U/mL hyaluronidase, 48 h) and in vivo (rat intraperitoneal implantation, 1-4 weeks). THA coatings degraded in vitro and in vivo with the lowest cross-linking density (0.0001% H2 O2 ), generally showing greater degradation as evidenced by significant decrease in coating cross-sectional area. However, all three coatings remained partially degraded after 4 weeks of in vivo implantation. Alternate strategies to accelerate in vivo degradation of THA coatings are required to allow investigation of the study hypothesis. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2664-2672, 2019.


Subject(s)
Coated Materials, Biocompatible , Dermis/chemistry , Herniorrhaphy , Hyaluronic Acid , Hydrogels , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL