Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793767

ABSTRACT

SARS-CoV-2 vaccination-induced protection against infection is likely to be affected by functional antibody features. To understand the kinetics of antibody responses in healthy individuals after primary series and third vaccine doses, sera from the recipients of the two licensed SARS-CoV-2 mRNA vaccines were assessed for circulating anti-SARS-CoV-2 spike IgG levels and avidity for up to 6 months post-primary series and 9 months after the third dose. Following primary series vaccination, anti-SARS-CoV-2 spike IgG levels declined from months 1 to 6, while avidity increased through month 6, irrespective of the vaccine received. The third dose of either vaccine increased anti-SARS-CoV-2 spike IgG levels and avidity and appeared to enhance antibody level persistence-generating a slower rate of decline in the 3 months following the third dose compared to the decline seen after the primary series alone. The third dose of both vaccines induced significant avidity increases 1 month after vaccination compared to the avidity response 6 months post-primary series vaccination (p ≤ 0.001). A significant difference in avidity responses between the two vaccines was observed 6 months post-third dose, where the BNT162b2 recipients had higher antibody avidity levels compared to the mRNA-1273 recipients (p = 0.020).

2.
Int J Cancer ; 153(1): 44-53, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36878686

ABSTRACT

Gut barrier dysfunction can result in the liver being exposed to an elevated level of gut-derived bacterial products via portal circulation. Growing evidence suggests that systemic exposure to these bacterial products promotes liver diseases including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). However, prospective studies have not examined the association between biomarkers of gut barrier dysfunction and HCC risk in a population of hepatitis B or C viral (HBV/HCV) carriers. We investigated whether prediagnostic, circulating biomarkers of gut barrier dysfunction were associated with HCC risk, using the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer (REVEAL)-HBV and REVEAL-HCV cohorts from Taiwan. REVEAL-HBV included 185 cases and 161 matched controls, and REVEAL-HCV 96 cases and 96 matched controls. The biomarkers quantitated were immunoglobulin A (IgA), IgG, and IgM against lipopolysaccharide (LPS) and flagellin, soluble CD14 (an LPS coreceptor), and LPS-binding protein (LBP). Odds ratios (ORs) and 95% confidence intervals (CIs) for associations between biomarker levels and HCC were calculated using multivariable-adjusted logistic regression. A doubling of the circulating levels of antiflagellin IgA or LBP was associated with a 76% to 93% increased risk of HBV-related HCC (OR per one unit change in log2 antiflagellin IgA = 1.76, 95% CI: 1.06-2.93; OR for LBP = 1.93, 95% CI: 1.10-3.38). None of the other markers were associated with an increased risk of HBV-related or HCV-related HCC. Results were similar when cases diagnosed in the first 5 years of follow-up were excluded. Our findings contribute to understanding the interplay of gut barrier dysfunction and primary liver cancer etiology.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Hepatitis C , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/epidemiology , Liver Neoplasms/epidemiology , Hepatitis B virus , Prospective Studies , Lipopolysaccharides , Hepatitis B/complications , Hepatitis B/epidemiology , Cohort Studies , Biomarkers , Immunoglobulin A , Hepatitis C/complications , Risk Factors
3.
Microbiol Spectr ; : e0389822, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927068

ABSTRACT

SARS-CoV-2 antibody testing is important for seroprevalence studies and for evaluating vaccine immune responses. We developed and validated a Luminex bead-based multiplex serology assay for measuring IgG levels of anti-SARS-CoV-2 antibodies against full-length spike (S), nucleocapsid (N), and receptor-binding domains (RBDs) of wild-type, RBD N501Y mutant, RBD E484K mutant, RBD triple mutant SARS-CoV-2 proteins, Sars-CoV-1, MERS-CoV, and common human coronaviruses, including SARS-CoV-2, OC43, 229E, HKU1, and NL63. Assay cutoff values, sensitivity, and specificity were determined using samples from 160 negative controls and 60 PCR-confirmed, SARS-CoV-2-infected individuals. The assay demonstrated sensitivities of 98.3%, 95%, and 100% and specificities of 100%, 99.4%, and 98.8% for anti-(S), -N, and -RBD, respectively. Results are expressed as IgG antibody concentrations in BAU/mL, using the WHO international standard (NIBSC code 20/136) for anti-SARS-CoV-2 IgG antibodies. When the multiplex assay was performed and compared with singleplex assays, the IgG antibody measurement geometric mean ratios were between 0.895 and 1.122, and no evidence of interference was observed between antigens. Lower and upper IgG concentration limits, based on accuracy (between 80% and 120%), precision (percent relative standard deviation, ≤25%), and sample dilutional linearity (between 75% and 125%), were used to establish the assay range. Precision was established by evaluating 24 individual human serum samples obtained from vaccinated and SARS-CoV-2-infected individuals. The assay provided reproducible, consistent results with typical coefficients of variation of ≤20% for all assays, irrespective of the run, day, or analyst. Results indicate the assay has high sensitivity and specificity and thus is appropriate for use in measuring SARS-CoV-2 IgG antibodies in infected and vaccinated individuals. IMPORTANCE The SARS-CoV-2 pandemic resulted in the development and validation of multiple serology tests with variable performance. While there are multiple SARS-CoV-2 serology tests to detect SARS-CoV-2 antibodies, the focus is usually either on only one antigen at a time or multiple proteins from only one SARS-CoV-2 variant. These tests usually do not evaluate antibodies against viral proteins from different SARS-CoV-2 variants or from other coronaviruses. Here, we evaluated a multiplex serology test based on Luminex technology, where antibodies against multiple domains of SARS-CoV-2 wild type, SARS-CoV-2 mutants, and common coronavirus antibodies are detected simultaneously in a single assay. This Luminex-based multiplex serology assay can enhance our understanding of the immune response to SARS-CoV-2 infection and vaccination.

4.
Article in English | MEDLINE | ID: mdl-31157215

ABSTRACT

Reusing growth medium (water supplemented with nutrients) for microalgae cultivation is required for economical and environmentally sustainable production of algae bioproducts (fuels, feed, and food). However, reused medium often contains microbes and dissolved organic matter that may affect algae growth. While the accumulation of dissolved organic carbon (DOC) in reused medium has been demonstrated, it is unclear whether DOC concentrations affect algae growth or subsequent rates of algal DOC release. To address these questions, lab-scale experiments were conducted with three marine microalgae strains, Navicula sp. SFP, Staurosira sp. C323, and Chlorella sp. D046, grown in medium reused up to four times. Navicula sp. and Chlorella sp. grew similarly in reused medium as in fresh medium, while Staurosira sp. became completely inhibited in reused medium. Across the three algae, there was no broad trend between initial DOC concentration in reused medium and algae growth response. Navicula sp. released less DOC overall in reused medium than in fresh medium, but DOC release rates did not decrease proportionally with increased DOC concentrations. Net DOC accumulation was much lower than gross DOC released by Navicula sp. and Staurosira sp., indicating the majority of released DOC was degraded. Additionally, biodegradation experiments with reused media showed no further net decrease in DOC, suggesting the accumulated DOC was recalcitrant to the associated bacteria. Overall, these results suggest that taxa-specific factors may be responsible for algae growth response in reused medium, and that DOC release and accumulation are insensitive to prior cultivation rounds. Choosing an algae strain that is uninhibited by accumulated DOC is therefore critical to ensure successful water reuse in the algae industry.

5.
ISME J ; 10(7): 1555-67, 2016 07.
Article in English | MEDLINE | ID: mdl-26800235

ABSTRACT

The distribution of major clades of Prochlorococcus tracks light, temperature and other environmental variables; yet, the drivers of genomic diversity within these ecotypes and the net effect on biodiversity of the larger community are poorly understood. We examined high light (HL) adapted Prochlorococcus communities across spatial and temporal environmental gradients in the Pacific Ocean to determine the ecological drivers of population structure and diversity across taxonomic ranks. We show that the Prochlorococcus community has the highest diversity at low latitudes, but seasonality driven by temperature, day length and nutrients adds complexity. At finer taxonomic resolution, some 'sub-ecotype' clades have unique, cohesive responses to environmental variables and distinct biogeographies, suggesting that presently defined ecotypes can be further partitioned into ecologically meaningful units. Intriguingly, biogeographies of the HL-I sub-ecotypes are driven by unique combinations of environmental traits, rather than through trait hierarchy, while the HL-II sub-ecotypes appear ecologically similar, thus demonstrating differences among these dominant HL ecotypes. Examining biodiversity across taxonomic ranks reveals high-resolution dynamics of Prochlorococcus evolution and ecology that are masked at phylogenetically coarse resolution. Spatial and seasonal trends of Prochlorococcus communities suggest that the future ocean may be comprised of different populations, with implications for ecosystem structure and function.


Subject(s)
Genetic Variation , Prochlorococcus/genetics , Adaptation, Physiological , Biodiversity , Ecosystem , Ecotype , Environment , Light , Pacific Ocean , Phylogeny , Phylogeography , Prochlorococcus/classification , Prochlorococcus/physiology , Prochlorococcus/radiation effects , Seawater/microbiology
6.
Environ Technol ; 34(13-16): 1983-94, 2013.
Article in English | MEDLINE | ID: mdl-24350452

ABSTRACT

To ensure economic implementation of syngas fermentation as a fuel-producing platform, engineers and scientists must both lower operating costs and increase product value. A considerable part of the operating costs is spent to procure chemicals for fermentation medium that can sustain sufficient growth of carboxydotrophic bacteria to convert synthesis gas (syngas: carbon monoxide, hydrogen, and carbon dioxide) into products such as ethanol. Recently, we have observed that wildtype carboxydotrophic bacteria (including Clostridium ljungdahlii) can produce alcohols with a longer carbon chain than ethanol via syngas fermentation when supplied with the corresponding carboxylic acid precursors, resulting in possibilities of increasing product value. Here, we evaluated a proof-of-concept system to couple syngas fermentation with the carboxylate platform to both lower medium costs and increase product value. Our carboxylate platform concept consists of an open culture, anaerobic fermentor that is fed with corn beer from conventional yeast fermentation in the corn kernel-to-ethanol industry. The mixed-culture anaerobic fermentor produces a mixture ofcarboxylic acids at dilute concentrations within the carboxylate platform effluent (CPE). Besides providing carboxylic acid precursors, this effluent may represent an inexpensive growth medium. An elemental analysis demonstrated that the CPE lacked certain essential trace metals, but contained ammonium, phosphate, sodium, chloride, potassium, magnesium, calcium, and sulphate at required concentrations. CPE medium with the addition of a trace metal solution supported growth and alcohol production of C. ljungdahlii at similar or better levels compared with an optimized synthetic medium (modified ATCC 1754 medium). Other expensive supplements, such as yeast extract or macro minerals (ammonium, phosphate), were not required. Finally, n-butyric acid and n-caproic acid within the CPE were converted into their corresponding medium-chain alcohols n-butanol and n-hexanol.


Subject(s)
Biofuels , Bioreactors/microbiology , Carboxylic Acids/metabolism , Yeasts/metabolism , Biofuels/economics , Biotechnology/education , Biotechnology/methods , Carboxylic Acids/analysis , Clostridium/chemistry , Clostridium/metabolism , Culture Media , Ethanol/analysis , Ethanol/metabolism , Fermentation , Gases/chemistry , Gases/metabolism , Minerals/analysis , Minerals/metabolism , Yeasts/chemistry
7.
Biotechnol Bioeng ; 110(4): 1066-77, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23172270

ABSTRACT

Short-chain carboxylic acids generated by various mixed- or pure-culture fermentation processes have been considered valuable precursors for production of bioalcohols. While conversion of carboxylic acids into alcohols is routinely performed with catalytic hydrogenation or with strong chemical reducing agents, here, a biological conversion route was explored. The potential of carboxydotrophic bacteria, such as Clostridium ljungdahlii and Clostridium ragsdalei, as biocatalysts for conversion of short-chain carboxylic acids into alcohols, using syngas as a source of electrons and energy is demonstrated. Acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, and n-caproic acid were converted into their corresponding alcohols. Furthermore, biomass yields and fermentation stoichiometry from the experimental data were modeled to determine how much metabolic energy C. ljungdahlii generated during syngas fermentation. An ATP yield of 0.4-0.5 mol of ATP per mol CO consumed was calculated in the presence of hydrogen. The ratio of protons pumped across the cell membrane versus electrons transferred from ferredoxin to NAD(+) via the Rnf complex is suggested to be 1.0. Based on these results, we provide suggestions how n-butyric acid to n-butanol conversion via syngas fermentation can be further improved.


Subject(s)
Alcohols/metabolism , Carboxylic Acids/metabolism , Clostridium/metabolism , Fermentation , Gases , Biocatalysis , Biomass , Oxidation-Reduction
8.
EMBO Rep ; 13(9): 811-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22836579

ABSTRACT

The ubiquitin-like molecule NEDD8 modifies cullin-RING ubiquitin E3 ligases. NEDD8 has been shown to have a few additional substrates, but the extent to which this modification targets non-cullins and the functional significance of such modifications remain unclear. Here, we demonstrate that the cell-cycle-regulating transcription factor E2F-1 is a substrate for NEDD8 post-translational modification. NEDDylation results in decreased E2F-1 stability, lower transcriptional activity and slower cell growth. The lysine residues in E2F-1 targeted for NEDDylation can also be methylated, pointing to a possible interplay between these modifications. These results identify a new mode of E2F-1 regulation and highlight the emerging role of NEDD8 in regulating transcription factor stability and function.


Subject(s)
E2F1 Transcription Factor/metabolism , Transcription, Genetic , Ubiquitination , Ubiquitins/metabolism , Cell Line, Tumor , Cell Proliferation , E2F1 Transcription Factor/genetics , Humans , Lysine/metabolism , Methylation , NEDD8 Protein , Protein Stability , Ubiquitins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...