Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 41, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397980

ABSTRACT

Mammalian and Drosophila genomes are partitioned into topologically associating domains (TADs). Although this partitioning has been reported to be functionally relevant, it is unclear whether TADs represent true physical units located at the same genomic positions in each cell nucleus or emerge as an average of numerous alternative chromatin folding patterns in a cell population. Here, we use a single-nucleus Hi-C technique to construct high-resolution Hi-C maps in individual Drosophila genomes. These maps demonstrate chromatin compartmentalization at the megabase scale and partitioning of the genome into non-hierarchical TADs at the scale of 100 kb, which closely resembles the TAD profile in the bulk in situ Hi-C data. Over 40% of TAD boundaries are conserved between individual nuclei and possess a high level of active epigenetic marks. Polymer simulations demonstrate that chromatin folding is best described by the random walk model within TADs and is most suitably approximated by a crumpled globule build of Gaussian blobs at longer distances. We observe prominent cell-to-cell variability in the long-range contacts between either active genome loci or between Polycomb-bound regions, suggesting an important contribution of stochastic processes to the formation of the Drosophila 3D genome.


Subject(s)
Drosophila melanogaster/genetics , Genome, Insect , Nucleic Acid Conformation , Animals , Biopolymers/metabolism , Chromatin/genetics , Databases, Genetic , Epigenesis, Genetic , Haploidy , Models, Genetic , Stochastic Processes , X Chromosome/genetics
2.
Nat Commun ; 10(1): 1176, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862957

ABSTRACT

How the nuclear lamina (NL) impacts on global chromatin architecture is poorly understood. Here, we show that NL disruption in Drosophila S2 cells leads to chromatin compaction and repositioning from the nuclear envelope. This increases the chromatin density in a fraction of topologically-associating domains (TADs) enriched in active chromatin and enhances interactions between active and inactive chromatin. Importantly, upon NL disruption the NL-associated TADs become more acetylated at histone H3 and less compact, while background transcription is derepressed. Two-colour FISH confirms that a TAD becomes less compact following its release from the NL. Finally, polymer simulations show that chromatin binding to the NL can per se compact attached TADs. Collectively, our findings demonstrate a dual function of the NL in shaping the 3D genome. Attachment of TADs to the NL makes them more condensed but decreases the overall chromatin density in the nucleus by stretching interphase chromosomes.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/metabolism , Histones/metabolism , Nuclear Lamina/metabolism , Animals , Cell Line , Chromosomes, Insect/metabolism , Down-Regulation , Drosophila melanogaster , Gene Expression Profiling , Genes, Insect/genetics , In Situ Hybridization, Fluorescence , Models, Animal , Up-Regulation
3.
Genome Announc ; 3(1)2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25573942

ABSTRACT

Nocardioides simplex VKM Ac-2033D is an effective microbial catalyst for 3-ketosteroid 1(2)-dehydrogenation, and it is capable of effective reduction of carbonyl groups at C-17 and C-20, hydrolysis of acetylated steroids, and utilization of natural sterols. Here, the complete genome sequence is reported. An array of genes related to steroid metabolic pathways have been identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...