Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Open ; 11(7)2022 07 15.
Article in English | MEDLINE | ID: mdl-35762874

ABSTRACT

The nuclear factor-Kappa B (NF-κB) pathway is a crucial mediator of inflammatory signaling. Aberrant activation of NF-κB is associated with several disorders including preeclampsia (PE). Many regulators of the NF-κB pathway have been identified, including microRNAs (miRNAs). Specifically, miR-517-3p targets mRNA encoding TNFAIP3 Interacting Protein 1 (TNIP1), an inhibitor of NF-κB signaling. Activation of NF-κB increases production of the cytokine TNF superfamily member 15 (TNFSF15), leading to the upregulation of anti-angiogenic soluble vascular endothelial growth factor receptor 1 (sFlt-1). We have previously observed that Cajal bodies (CBs), subnuclear domains, are associated with the chromosome 19 miRNA gene cluster (C19MC), which encodes miR-517-3p. We have also found that coilin, the CB marker protein, is a positive regulator of miRNA biogenesis. Here we report that coilin is a regulator of miR-517-3p, sFlt-1, TNIP1, TNFSF15 and NF-κB activation, and this regulation is influenced by hypoxia. We also report that coilin and CBs are induced in the reduced uterine perfusion pressure (RUPP) rat model of PE. Collectively, the data presented here implicate coilin as a novel regulator of NF-κB activation and sFlt-1 upregulation.


Subject(s)
MicroRNAs , Pre-Eclampsia , Animals , Female , Humans , Inflammation/genetics , MicroRNAs/genetics , NF-kappa B/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Rats , Tumor Necrosis Factor Ligand Superfamily Member 15 , Vascular Endothelial Growth Factor A
2.
Mol Biol Cell ; 32(20): br4, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34319763

ABSTRACT

MicroRNAs (miRNAs) are ∼22 nt small noncoding RNAs that control gene expression at the posttranscriptional level through translational inhibition and destabilization of their target mRNAs. The biogenesis of miRNAs involves a series of processing steps beginning with cropping of the primary miRNA transcript by the Microprocessor complex, which is composed of Drosha and DGCR8. Here we report a novel regulatory interaction between the Microprocessor components and coilin, the Cajal body (CB) marker protein. Coilin knockdown causes alterations in the level of primary and mature miRNAs, let-7a and miR-34a, and their miRNA targets, HMGA2 and Notch1, respectively. We also found that coilin knockdown affects the levels of DGCR8 and Drosha in cells with (HeLa) and without (WI-38) CBs. To further explore the role of coilin in miRNA biogenesis, we conducted a series of coimmunoprecipitation experiments using coilin and DGCR8 constructs, which revealed that coilin and DGCR8 can form a complex. Additionally, our results indicate that phosphorylation of DGCR8, which has been shown to increase protein stability, is impacted by coilin knockdown. Collectively, our results implicate coilin as a member of the regulatory network governing miRNA biogenesis.


Subject(s)
MicroRNAs/biosynthesis , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Cell Line , HMGA2 Protein , HeLa Cells , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Proteins/physiology , Phosphorylation , Protein Stability , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/physiology , Ribonuclease III
3.
J Cell Sci ; 134(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34137440

ABSTRACT

Hypoxia is a severe stressor to cellular homeostasis. At the cellular level, low oxygen triggers the transcription of a variety of genes supporting cell survival and oxygen homeostasis mediated by transcription factors, such as hypoxia-inducible factors (HIFs). Among many determinants dictating cell responses to hypoxia and HIFs are microRNAs (miRNAs). Cajal bodies (CBs), subnuclear structures involved in ribonucleoprotein biogenesis, have been recently proven to contribute to miRNA processing and biogenesis but have not been studied under hypoxia. Here, we show, for the first time, a hypoxia-dependent increase in CB number in WI-38 primary fibroblasts, which normally have very few CBs. Additionally, the CB marker protein coilin is upregulated in hypoxic WI-38 cells. However, the hypoxic coilin upregulation was not seen in transformed cell lines. Furthermore, we found that coilin is needed for the hypoxic induction of a well-known hypoxia-induced miRNA (hypoxamiR), miR-210, as well as for the hypoxia-induced alternative splicing of the miR-210 host gene, MIR210HG. These findings provide a new link in the physiological understanding of coilin, CBs and miRNA dysregulation in hypoxic pathology.


Subject(s)
MicroRNAs , Alternative Splicing/genetics , Cell Hypoxia , Coiled Bodies/genetics , Coiled Bodies/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism
4.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806551

ABSTRACT

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-age women. PCOS is characterized by hyperandrogenism and ovulatory dysfunction. Women with PCOS have a high prevalence of obesity, insulin resistance (IR), increased blood pressure (BP), and activation of the renin angiotensin system (RAS). Effective evidence-based therapeutics to ameliorate the cardiometabolic complications in PCOS are lacking. The sodium-glucose cotransporter-2 (SGLT2) inhibitor Empagliflozin (EMPA) reduces BP and hyperglycemia in type 2 diabetes mellitus. We hypothesized that hyperandrogenemia upregulates renal SGLT2 expression and that EMPA ameliorates cardiometabolic complications in a hyperandrogenemic PCOS model. Four-week-old female Sprague Dawley rats were treated with dihydrotestosterone (DHT) for 90 days, and EMPA was co-administered for the last three weeks. DHT upregulated renal SGLT2, SGLT4, and GLUT2, but downregulated SGLT3 mRNA expression. EMPA decreased DHT-mediated increases in fat mass, plasma leptin, and BP, but failed to decrease plasma insulin, HbA1c, or albuminuria. EMPA decreased DHT-mediated increase in renal angiotensin converting enzyme (ACE), angiotensin converting enzyme 2 (ACE2), and angiotensin II type 1 receptor (AGT1R) mRNA and protein expression. In summary, SGLT2 inhibition proved beneficial in adiposity and BP reduction in a hyperandrogenemic PCOS model; however, additional therapies may be needed to improve IR and renal injury.


Subject(s)
Heart/drug effects , Polycystic Ovary Syndrome/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/metabolism , Animals , Benzhydryl Compounds/pharmacology , Dihydrotestosterone/pharmacology , Disease Models, Animal , Female , Glucosides/pharmacology , Hyperandrogenism/drug therapy , Hyperandrogenism/metabolism , Polycystic Ovary Syndrome/drug therapy , Proteins/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
5.
Biol Open ; 9(10)2020 10 26.
Article in English | MEDLINE | ID: mdl-33037012

ABSTRACT

The Cajal body (CB) is a subnuclear domain that participates in the biogenesis of many different types of ribonucleoproteins (RNPs), including small nuclear RNPs (snRNPs), small Cajal body-specific RNPs (scaRNPs) and telomerase. Most scaRNAs, the RNA component of scaRNPs, accumulate in CBs. However, there are three scaRNAs (scaRNA 2, 9, and 17) that are known to be processed into small, nucleolar-enriched fragments. Evidence suggests that these fragments are packaged into a new class of RNPs, called regulatory RNPs (regRNPs), and may modify small nucleolar RNP (snoRNP) activity, thus playing a role in rRNA modification. However, the mechanism by which these fragments are produced is unknown. Previous work has reported the involvement of Drosha and DGCR8 in the cleavage of primary-scaRNA9. Here, we expand on that knowledge by identifying sequence elements necessary for the efficient production of these RNA fragments and demonstrate that primary scaRNA 2 and 17 are also processed by the Drosha-DGCR8 complex. Collectively, our work establishes new factors in the scaRNP biogenesis pathway and adds to the ever-expanding list of noncanonical functions for the microprocessor complex.


Subject(s)
Coiled Bodies/metabolism , RNA Processing, Post-Transcriptional , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism , Gene Expression , Gene Expression Regulation , Gene Order , Genetic Vectors/genetics , HeLa Cells , Humans
6.
Mol Biol Cell ; 31(15): 1561-1569, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32432989

ABSTRACT

Cajal bodies (CBs) are subnuclear domains involved in the formation of ribonucleoproteins (RNPs) including small nuclear RNPs (snRNPs). CBs associate with specific gene loci, which impacts expression and provides a platform for the biogenesis of the nascent transcripts emanating from these genes. Here we report that CBs can associate with the C19MC microRNA (miRNA) gene cluster, which suggests a role for CBs in the biogenesis of animal miRNAs. The machinery involved in the formation of miRNAs includes the Drosha/DGCR8 complex, which processes primary-miRNA to precursor miRNA. Further processing of precursor miRNA by Dicer and other components generates mature miRNA. To test if CBs influence the expression and formation of miRNAs, we examined two representative miRNAs (miR-520 h and let-7a) in conditions that disrupt CBs. CB disruption correlates with alterations in the level of primary and mature miRNA and the let-7a mRNA target, HMGA2. We have also found that the processing of some small CB-specific RNAs (scaRNAs) is directly mediated by the Drosha/DGCR8 complex. ScaRNAs form scaRNPs, which play an important role in snRNP formation. Collectively, our results demonstrate that CBs and the miRNA processing machinery functionally interact and together contribute to the biogenesis of miRNAs and snRNPs.


Subject(s)
Coiled Bodies/metabolism , MicroRNAs/metabolism , RNA Processing, Post-Transcriptional/genetics , Cell Line, Tumor , DNA-Binding Proteins/metabolism , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Humans , MicroRNAs/genetics , Models, Biological , Multigene Family , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism , Substrate Specificity
7.
Biol Open ; 8(3)2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30858166

ABSTRACT

The most common types of modification in human rRNA are pseudouridylation and 2'-O ribose methylation. These modifications are performed by small nucleolar ribonucleoproteins (snoRNPs) which contain a guide RNA (snoRNA) that base pairs at specific sites within the rRNA to direct the modification. rRNA modifications can vary, generating ribosome heterogeneity. One possible method that can be used to regulate rRNA modifications is by controlling snoRNP activity. RNA fragments derived from some small Cajal body-specific RNAs (scaRNA 2, 9 and 17) may influence snoRNP activity. Most scaRNAs accumulate in the Cajal body - a subnuclear domain - where they participate in the biogenesis of small nuclear RNPs, but scaRNA 2, 9 and 17 generate nucleolus-enriched fragments of unclear function, and we hypothesize that these fragments form regulatory RNPs that impact snoRNP activity and modulate rRNA modifications. Our previous work has shown that SMN, Drosha and various stresses, including etoposide treatment, may alter regulatory RNP formation. Here we demonstrate that etoposide treatment decreases the phosphorylation of SMN, reduces Drosha levels and increases the 2'-O-methylation of two sites within 28S rRNA. These findings further support a role for SMN and Drosha in regulating rRNA modification, possibly by affecting snoRNP or regulatory RNP activity.

8.
Biol Open ; 7(9)2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30177550

ABSTRACT

Small Cajal body-specific RNAs (scaRNAs) are part of small Cajal body-specific ribonucleoproteins (scaRNPs) that modify small nuclear RNA (snRNA) in Cajal bodies (CBs). Several scaRNAs (scaRNA 2, 9 and 17) have been found to generate smaller, nucleolus-enriched fragments. We hypothesize that the fragments derived from scaRNA 2, 9 and 17 form regulatory RNPs that influence the level of modifications within rRNA by altering small nucleolar RNP (snoRNP) activity. Here we show that external factors such as DNA damaging agents can alter the scaRNA9 full length to processed fragment ratio. We also show that full-length scaRNA2 levels are likewise impacted by DNA damage, which correlates with the disruption of SMN, coilin and WRAP53 co-localization in CBs. The dynamics of scaRNA9 were also shown to be affected by Drosha levels, which suggests that this protein may participate in the biogenesis and processing of this non-coding RNA. Identification of factors that contribute to scaRNA 2, 9 and 17 processing may facilitate an assessment of how external stress can lead to changes in rRNA modifications.

9.
Biol Open ; 7(8)2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30037971

ABSTRACT

Ribosomes can be heterogeneous, and the major contributor to ribosome heterogeneity is variation in rRNA modification. There are two major types of rRNA modification, pseudouridylation and ribose methylation. In humans, the majority of these rRNA modifications are conducted by two classes of small nucleolar ribonucleoproteins (snoRNPs), which contain a guide RNA (small nucleolar RNA, snoRNA) complexed with proteins. Box H/ACA snoRNPs conduct pseudouridylation modifications and box C/D snoRNPs generate ribose methylation modifications. It is unclear how ribosome heterogeneity is accomplished in regards to the understanding of the signals and factors that regulate rRNA modifications. We have recently reported that a new class of RNP, that we term regulatory RNP (regRNP), may contribute to rRNA modification as well as the modification of nucleolar trafficked U6 snRNA, via interactions with snoRNPs. Here we report the identification of additional regRNP activities that influence the methylation of two sites within 18S rRNA, two sites within 28S rRNA and one site within U6 snRNA. These findings provide additional proof that regulation of snoRNP activity contributes to ribosome heterogeneity.

SELECTION OF CITATIONS
SEARCH DETAIL
...