Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 16165, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700060

ABSTRACT

Protein-based drug discovery strategies have the distinct advantage of providing insights into the molecular mechanisms of chemical effectors. Currently, there are no known trehalose-6-phosphate phosphatase (TPP) inhibitors that possess reasonable inhibition constants and chemical scaffolds amenable to convenient modification. In the present study, we subjected recombinant TPPs to a two-tiered screening approach to evaluate several diverse compound groups with respect to their potential as TPP inhibitors. From a total of 5452 compounds tested, N-(phenylthio)phthalimide was identified as an inhibitor of nematode TPPs with apparent Ki values of 1.0 µM and 0.56 µM against the enzymes from the zoonotic roundworms Ancylostoma ceylanicum and Toxocara canis, respectively. Using site-directed mutagenesis, we demonstrate that this compound acts as a suicide inhibitor that conjugates a strictly conserved cysteine residue in the vicinity of the active site of nematode TPPs. The anthelmintic properties of N-(phenylthio)phthalimide were assessed in whole nematode assays using larvae of the ascaroids T. canis and T. cati, as well as the barber's pole worm Haemonchus contortus. The compound was particularly effective against each of the ascaroids with an IC50 value of 9.3 µM in the survival assay of T. cati larvae, whereas no bioactivity was observed against H. contortus.


Subject(s)
Anthelmintics/pharmacology , Enzyme Inhibitors/pharmacology , Helminth Proteins/antagonists & inhibitors , Nematoda/enzymology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phthalimides/pharmacology , Animals , Helminth Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...