Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(23): 231903, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905689

ABSTRACT

The cross section of the process e^{+}e^{-}→π^{+}π^{-} has been measured in the center-of-mass energy range from 0.32 to 1.2 GeV with the CMD-3 detector at the electron-positron collider VEPP-2000. The measurement is based on an integrated luminosity of about 88 pb^{-1}, of which 62 pb^{-1} represent a complete dataset collected by CMD-3 at center-of-mass energies below 1 GeV. In the dominant region near the ρ resonance a systematic uncertainty of 0.7% was achieved. The implications of the presented results for the evaluation of the hadronic contribution to the anomalous magnetic moment of the muon are discussed.

2.
Phys Rev Lett ; 106(4): 041803, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21405320

ABSTRACT

We report a measurement of the positive muon lifetime to a precision of 1.0 ppm; it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2×10(12) decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give τ(µ(+)) (MuLan)=2 196 980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G(F) (MuLan)=1.166 378 8(7)×10(-5) GeV(-2) (0.6 ppm). It is also used to extract the µ(-)p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g(P).

3.
Phys Rev Lett ; 100(9): 091602, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18352695

ABSTRACT

The spin precession frequency of muons stored in the (g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for a nonzero delta omega a(=omega a mu+ - omega a mu-) and a sidereal variation of omega a mu+/-). No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ = -(1.0+/-1.1) x 10(-23) GeV; (m mu dZ0 + HXY)=(1.8+/-6.0) x 10(-23) GeV; and the 95% confidence level limits b perpendicular mu+ <1.4 x 10(-24) GeV and b perpendicular mu- <2.6 x 10(-24) GeV.

4.
Phys Rev Lett ; 99(3): 032001, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17678280

ABSTRACT

The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau(micro)=2.197 013(24) micros, is in excellent agreement with the previous world average. The new world average tau(micro)=2.197 019(21) micros determines the Fermi constant G(F)=1.166 371(6)x10(-5) GeV-2 (5 ppm). Additionally, the precision measurement of the positive-muon lifetime is needed to determine the nucleon pseudoscalar coupling g(P).

5.
Phys Rev Lett ; 92(16): 161802, 2004 Apr 23.
Article in English | MEDLINE | ID: mdl-15169217

ABSTRACT

The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 ppm (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement for the negative muon. The result a(mu(-))=11 659 214(8)(3) x 10(-10) (0.7 ppm), where the first uncertainty is statistical and the second is systematic, is consistent with previous measurements of the anomaly for the positive and the negative muon. The average of the measurements of the muon anomaly is a(mu)(exp)=11 659 208(6) x 10(-10) (0.5 ppm).

6.
Phys Rev Lett ; 89(10): 101804, 2002 Sep 02.
Article in English | MEDLINE | ID: mdl-12225185

ABSTRACT

A higher precision measurement of the anomalous g value, a(mu)=(g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron, based on data collected in the year 2000. The result a(mu(+))=11 659 204(7)(5)x10(-10) (0.7 ppm) is in good agreement with previous measurements and has an error about one-half that of the combined previous data. The present world average experimental value is a(mu)(expt)=11 659 203(8)x10(-10) (0.7 ppm).

7.
Phys Rev Lett ; 86(11): 2227-31, 2001 Mar 12.
Article in English | MEDLINE | ID: mdl-11289896

ABSTRACT

A precise measurement of the anomalous g value, a(mu) = (g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a(mu+) = 11 659 202(14) (6) x 10(-10) (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a(mu)(SM) = 11 659 159.6(6.7) x 10(-10) (0.57 ppm) and a(mu)(exp) - a(mu)(SM) = 43(16) x 10(-10) in which a(mu)(exp) is the world average experimental value.

SELECTION OF CITATIONS
SEARCH DETAIL
...