Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Pain ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776171

ABSTRACT

ABSTRACT: Epigenetics has gained considerable interest as potential mediators of molecular alterations that could underlie the prolonged sensitization of nociceptors, neurons, and glia in response to various environmental stimuli. Histone acetylation and deacetylation, key processes in modulating chromatin, influence gene expression; elevated histone acetylation enhances transcriptional activity, whereas decreased acetylation leads to DNA condensation and gene repression. Altered levels of histone deacetylase (HDAC) have been detected in various animal pain models, and HDAC inhibitors have demonstrated analgesic effects in these models, indicating HDACs' involvement in chronic pain pathways. However, animal studies have predominantly examined epigenetic modulation within the spinal cord after pain induction, which may not fully reflect the complexity of chronic pain in humans. Moreover, methodological limitations have previously impeded an in-depth study of epigenetic changes in the human brain. In this study, we employed [11C]Martinostat, an HDAC-selective radiotracer, positron emission tomography to assess HDAC availability in the brains of 23 patients with chronic low back pain (cLBP) and 11 age-matched and sex-matched controls. Our data revealed a significant reduction of [11C]Martinostat binding in several brain regions associated with pain processing in patients with cLBP relative to controls, highlighting the promising potential of targeting HDAC modulation as a therapeutic strategy for cLBP.

2.
Brain Behav Immun ; 119: 713-723, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642615

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has triggered a consequential public health crisis of post-acute sequelae of COVID-19 (PASC), sometimes referred to as long COVID. The mechanisms of the heterogeneous persistent symptoms and signs that comprise PASC are under investigation, and several studies have pointed to the central nervous and vascular systems as being potential sites of dysfunction. In the current study, we recruited individuals with PASC with diverse symptoms, and examined the relationship between neuroinflammation and circulating markers of vascular dysfunction. We used [11C]PBR28 PET neuroimaging, a marker of neuroinflammation, to compare 12 PASC individuals versus 43 normative healthy controls. We found significantly increased neuroinflammation in PASC versus controls across a wide swath of brain regions including midcingulate and anterior cingulate cortex, corpus callosum, thalamus, basal ganglia, and at the boundaries of ventricles. We also collected and analyzed peripheral blood plasma from the PASC individuals and found significant positive correlations between neuroinflammation and several circulating analytes related to vascular dysfunction. These results suggest that an interaction between neuroinflammation and vascular health may contribute to common symptoms of PASC.


Subject(s)
Brain , COVID-19 , Neuroinflammatory Diseases , Positron-Emission Tomography , SARS-CoV-2 , Humans , COVID-19/diagnostic imaging , COVID-19/complications , Male , Positron-Emission Tomography/methods , Female , Middle Aged , Adult , Neuroinflammatory Diseases/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Post-Acute COVID-19 Syndrome , Vascular Diseases/diagnostic imaging , Aged , Pyridines , Pyrimidines
3.
Brain ; 147(7): 2566-2578, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38289855

ABSTRACT

Compartmentalized meningeal inflammation is thought to represent one of the key players in the pathogenesis of cortical demyelination in multiple sclerosis. PET targeting the 18 kDa mitochondrial translocator protein (TSPO) is a molecular-specific approach to quantifying immune cell-mediated density in the cortico-meningeal tissue compartment in vivo. This study aimed to characterize cortical and meningeal TSPO expression in a heterogeneous cohort of multiple sclerosis cases using in vivo simultaneous MR-PET with 11C-PBR28, a second-generation TSPO radioligand, and ex vivo immunohistochemistry. Forty-nine multiple sclerosis patients (21 with secondary progressive and 28 with relapsing-remitting multiple sclerosis) with mixed or high affinity binding for 11C-PBR28 underwent 90-min 11C-PBR28 simultaneous MR-PET. Tracer binding was measured using 60-90 min normalized standardized uptake value ratios sampled at mid-cortical depth and ∼3 mm above the pial surface. Data in multiple sclerosis patients were compared to 21 age-matched healthy controls. To characterize the nature of 11C-PBR28 PET uptake, the meningeal and cortical lesion cellular expression of TSPO was further described in post-mortem brain tissue from 20 cases with secondary progressive multiple sclerosis and five age-matched healthy donors. Relative to healthy controls, patients with multiple sclerosis exhibited abnormally increased TSPO signal in the cortex and meningeal tissue, diffusively in progressive disease and more localized in relapsing-remitting multiple sclerosis. In multiple sclerosis, increased meningeal TSPO levels were associated with increased Expanded Disability Status Scale scores (P = 0.007, by linear regression). Immunohistochemistry, validated using in situ sequencing analysis, revealed increased TSPO expression in the meninges and adjacent subpial cortical lesions of post-mortem secondary progressive multiple sclerosis cases relative to control tissue. In these cases, increased TSPO expression was related to meningeal inflammation. Translocator protein immunostaining was detected on meningeal MHC-class II+ macrophages and cortical-activated MHC-class II+ TMEM119+ microglia. In vivo arterial blood data and neuropathology showed that endothelial binding did not significantly account for increased TSPO cortico-meningeal expression in multiple sclerosis. Our findings support the use of TSPO-PET in multiple sclerosis for imaging in vivo inflammation in the cortico-meningeal brain tissue compartment and provide in vivo evidence implicating meningeal inflammation in the pathogenesis of the disease.


Subject(s)
Meninges , Multiple Sclerosis , Positron-Emission Tomography , Receptors, GABA , Humans , Receptors, GABA/metabolism , Receptors, GABA/genetics , Female , Male , Middle Aged , Adult , Positron-Emission Tomography/methods , Meninges/metabolism , Meninges/diagnostic imaging , Meninges/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Aged , Cerebral Cortex/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Magnetic Resonance Imaging , Multiple Sclerosis, Chronic Progressive/metabolism , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Acetamides , Pyridines
4.
Pain ; 165(5): 1121-1130, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38015622

ABSTRACT

ABSTRACT: Although inflammation is known to play a role in knee osteoarthritis (KOA), inflammation-specific imaging is not routinely performed. In this article, we evaluate the role of joint inflammation, measured using [ 11 C]-PBR28, a radioligand for the inflammatory marker 18-kDa translocator protein (TSPO), in KOA. Twenty-one KOA patients and 11 healthy controls (HC) underwent positron emission tomography/magnetic resonance imaging (PET/MRI) knee imaging with the TSPO ligand [ 11 C]-PBR28. Standardized uptake values were extracted from regions-of-interest (ROIs) semiautomatically segmented from MRI data, and compared across groups (HC, KOA) and subgroups (unilateral/bilateral KOA symptoms), across knees (most vs least painful), and against clinical variables (eg, pain and Kellgren-Lawrence [KL] grades). Overall, KOA patients demonstrated elevated [ 11 C]-PBR28 binding across all knee ROIs, compared with HC (all P 's < 0.005). Specifically, PET signal was significantly elevated in both knees in patients with bilateral KOA symptoms (both P 's < 0.01), and in the symptomatic knee ( P < 0.05), but not the asymptomatic knee ( P = 0.95) of patients with unilateral KOA symptoms. Positron emission tomography signal was higher in the most vs least painful knee ( P < 0.001), and the difference in pain ratings across knees was proportional to the difference in PET signal ( r = 0.74, P < 0.001). Kellgren-Lawrence grades neither correlated with PET signal (left knee r = 0.32, P = 0.19; right knee r = 0.18, P = 0.45) nor pain ( r = 0.39, P = 0.07). The current results support further exploration of [ 11 C]-PBR28 PET signal as an imaging marker candidate for KOA and a link between joint inflammation and osteoarthritis-related pain severity.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/diagnostic imaging , Positron-Emission Tomography/methods , Knee Joint/metabolism , Inflammation/diagnostic imaging , Pain , Receptors, GABA/metabolism
5.
Brain Behav Immun ; 116: 259-266, 2024 02.
Article in English | MEDLINE | ID: mdl-38081435

ABSTRACT

The COVID-19 pandemic has exerted a global impact on both physical and mental health, and clinical populations have been disproportionally affected. To date, however, the mechanisms underlying the deleterious effects of the pandemic on pre-existing clinical conditions remain unclear. Here we investigated whether the onset of the pandemic was associated with an increase in brain/blood levels of inflammatory markers and MRI-estimated brain age in patients with chronic low back pain (cLBP), irrespective of their infection history. A retrospective cohort study was conducted on 56 adult participants with cLBP (28 'Pre-Pandemic', 28 'Pandemic') using integrated Positron Emission Tomography/ Magnetic Resonance Imaging (PET/MRI) and the radioligand [11C]PBR28, which binds to the neuroinflammatory marker 18 kDa Translocator Protein (TSPO). Image data were collected between November 2017 and January 2020 ('Pre-Pandemic' cLBP) or between August 2020 and May 2022 ('Pandemic' cLBP). Compared to the Pre-Pandemic group, the Pandemic patients demonstrated widespread and statistically significant elevations in brain TSPO levels (P =.05, cluster corrected). PET signal elevations in the Pandemic group were also observed when 1) excluding 3 Pandemic subjects with a known history of COVID infection, or 2) using secondary outcome measures (volume of distribution -VT- and VT ratio - DVR) in a smaller subset of participants. Pandemic subjects also exhibited elevated serum levels of inflammatory markers (IL-16; P <.05) and estimated BA (P <.0001), which were positively correlated with [11C]PBR28 SUVR (r's ≥ 0.35; P's < 0.05). The pain interference scores, which were elevated in the Pandemic group (P <.05), were negatively correlated with [11C]PBR28 SUVR in the amygdala (r = -0.46; P<.05). This work suggests that the pandemic outbreak may have been accompanied by neuroinflammation and increased brain age in cLBP patients, as measured by multimodal imaging and serum testing. This study underscores the broad impact of the pandemic on human health, which extends beyond the morbidity solely mediated by the virus itself.


Subject(s)
COVID-19 , Chronic Pain , Adult , Humans , Pandemics , Chronic Pain/metabolism , Retrospective Studies , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Aging , Receptors, GABA/metabolism
6.
Arthritis Rheumatol ; 76(1): 130-140, 2024 01.
Article in English | MEDLINE | ID: mdl-37727908

ABSTRACT

OBJECTIVE: Fibromyalgia (FM) is characterized by pervasive pain-related symptomatology and high levels of negative affect. Mind-body treatments such as cognitive behavioral therapy (CBT) appear to foster improvement in FM via reductions in pain-related catastrophizing, a set of negative, pain-amplifying cognitive and emotional processes. However, the neural underpinnings of CBT's catastrophizing-reducing effects remain uncertain. This randomized controlled mechanistic trial was designed to assess CBT's effects on pain catastrophizing and its underlying brain circuitry. METHODS: Of 114 enrolled participants, 98 underwent a baseline neuroimaging assessment and were randomized to 8 weeks of individual CBT or a matched FM education control (EDU) condition. RESULTS: Compared with EDU, CBT produced larger decreases in pain catastrophizing post treatment (P < 0.05) and larger reductions in pain interference and symptom impact. Decreases in pain catastrophizing played a significant role in mediating those functional improvements in the CBT group. At baseline, brain functional connectivity between the ventral posterior cingulate cortex (vPCC), a key node of the default mode network (DMN), and somatomotor and salience network regions was increased during catastrophizing thoughts. Following CBT, vPCC connectivity to somatomotor and salience network areas was reduced. CONCLUSION: Our results suggest clinically important and CBT-specific associations between somatosensory/motor- and salience-processing brain regions and the DMN in chronic pain. These patterns of connectivity may contribute to individual differences (and treatment-related changes) in somatic self-awareness. CBT appears to provide clinical benefits at least partially by reducing pain-related catastrophizing and producing adaptive alterations in DMN functional connectivity.


Subject(s)
Chronic Pain , Cognitive Behavioral Therapy , Fibromyalgia , Humans , Fibromyalgia/diagnostic imaging , Fibromyalgia/therapy , Chronic Pain/diagnostic imaging , Chronic Pain/therapy , Chronic Pain/psychology , Cognitive Behavioral Therapy/methods , Brain/diagnostic imaging , Neuroimaging
7.
Pain ; 165(1): 126-134, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37578456

ABSTRACT

ABSTRACT: Recently, we showed that patients with knee osteoarthritis (KOA) demonstrate alterations in the thalamic concentrations of several metabolites compared with healthy controls: higher myo-inositol (mIns), lower N-acetylaspartate (NAA), and lower choline (Cho). Here, we evaluated whether these metabolite alterations are specific to KOA or could also be observed in patients with a different musculoskeletal condition, such as chronic low back pain (cLBP). Thirty-six patients with cLBP and 20 healthy controls were scanned using 1 H-magnetic resonance spectroscopy (MRS) and a PRESS (Point RESolved Spectroscopy) sequence with voxel placement in the left thalamus. Compared with healthy controls, patients with cLBP demonstrated lower absolute concentrations of NAA ( P = 0.0005) and Cho ( P < 0.05) and higher absolute concentrations of mIns ( P = 0.01) when controlling for age, as predicted by our previous work in KOA. In contrast to our KOA study, mIns levels in this population did not significantly correlate with pain measures (eg, pain severity or duration). However, exploratory analyses revealed that NAA levels in patients were negatively correlated with the severity of sleep disturbance ( P < 0.01), which was higher in patients compared with healthy controls ( P < 0.001). Additionally, also in patients, both Cho and mIns levels were positively correlated with age ( P < 0.01 and P < 0.05, respectively). Altogether, these results suggest that thalamic metabolite changes may be common across etiologically different musculoskeletal chronic pain conditions, including cLBP and KOA, and may relate to symptoms often comorbid with chronic pain, such as sleep disturbance. The functional and clinical significance of these brain changes remains to be fully understood.


Subject(s)
Chronic Pain , Low Back Pain , Musculoskeletal Pain , Rheumatic Diseases , Humans , Chronic Pain/metabolism , Low Back Pain/complications , Low Back Pain/diagnostic imaging , Musculoskeletal Pain/metabolism , Magnetic Resonance Spectroscopy/methods , Thalamus/diagnostic imaging , Aspartic Acid/metabolism , Choline/metabolism , Creatine/metabolism
8.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37905031

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has triggered a consequential public health crisis of post-acute sequelae of COVID-19 (PASC), sometimes referred to as long COVID. The mechanisms of the heterogeneous persistent symptoms and signs that comprise PASC are under investigation, and several studies have pointed to the central nervous and vascular systems as being potential sites of dysfunction. In the current study, we recruited individuals with PASC with diverse symptoms, and examined the relationship between neuroinflammation and circulating markers of vascular dysfunction. We used [11C]PBR28 PET neuroimaging, a marker of neuroinflammation, to compare 12 PASC individuals versus 43 normative healthy controls. We found significantly increased neuroinflammation in PASC versus controls across a wide swath of brain regions including midcingulate and anterior cingulate cortex, corpus callosum, thalamus, basal ganglia, and at the boundaries of ventricles. We also collected and analyzed peripheral blood plasma from the PASC individuals and found significant positive correlations between neuroinflammation and several circulating analytes related to vascular dysfunction. These results suggest that an interaction between neuroinflammation and vascular health may contribute to common symptoms of PASC.

9.
Ann Neurol ; 94(6): 1155-1163, 2023 12.
Article in English | MEDLINE | ID: mdl-37642641

ABSTRACT

OBJECTIVE: Functional and morphologic changes in extracranial organs can occur after acute brain injury. The neuroanatomic correlates of such changes are not fully known. Herein, we tested the hypothesis that brain infarcts are associated with cardiac and systemic abnormalities (CSAs) in a regionally specific manner. METHODS: We generated voxelwise p value maps of brain infarcts for poststroke plasma cardiac troponin T (cTnT) elevation, QTc prolongation, in-hospital infection, and acute stress hyperglycemia (ASH) in 1,208 acute ischemic stroke patients prospectively recruited into the Heart-Brain Interactions Study. We examined the relationship between infarct location and CSAs using a permutation-based approach and identified clusters of contiguous voxels associated with p < 0.05. RESULTS: cTnT elevation not attributable to a known cardiac reason was detected in 5.5%, QTc prolongation in the absence of a known provoker in 21.2%, ASH in 33.9%, and poststroke infection in 13.6%. We identified significant, spatially segregated voxel clusters for each CSA. The clusters for troponin elevation and QTc prolongation mapped to the right hemisphere. There were 3 clusters for ASH, the largest of which was in the left hemisphere. We found 2 clusters for poststroke infection, one associated with pneumonia in the left and one with urinary tract infection in the right hemisphere. The relationship between infarct location and CSAs persisted after adjusting for infarct volume. INTERPRETATION: Our results show that there are discrete regions of brain infarcts associated with CSAs. This information could be used to bootstrap toward new markers for better differentiation between neurogenic and non-neurogenic mechanisms of poststroke CSAs. ANN NEUROL 2023;94:1155-1163.


Subject(s)
Brain Ischemia , Ischemic Stroke , Long QT Syndrome , Stroke , Humans , Ischemic Stroke/complications , Stroke/complications , Stroke/diagnostic imaging , Brain Ischemia/complications , Brain Ischemia/diagnostic imaging , Brain Infarction/complications , Troponin T , Long QT Syndrome/complications
10.
Pain Med ; 24(Suppl 1): S3-S12, 2023 08 04.
Article in English | MEDLINE | ID: mdl-36622041

ABSTRACT

In 2019, the National Health Interview survey found that nearly 59% of adults reported pain some, most, or every day in the past 3 months, with 39% reporting back pain, making back pain the most prevalent source of pain, and a significant issue among adults. Often, identifying a direct, treatable cause for back pain is challenging, especially as it is often attributed to complex, multifaceted issues involving biological, psychological, and social components. Due to the difficulty in treating the true cause of chronic low back pain (cLBP), an over-reliance on opioid pain medications among cLBP patients has developed, which is associated with increased prevalence of opioid use disorder and increased risk of death. To combat the rise of opioid-related deaths, the National Institutes of Health (NIH) initiated the Helping to End Addiction Long-TermSM (HEAL) initiative, whose goal is to address the causes and treatment of opioid use disorder while also seeking to better understand, diagnose, and treat chronic pain. The NIH Back Pain Consortium (BACPAC) Research Program, a network of 14 funded entities, was launched as a part of the HEAL initiative to help address limitations surrounding the diagnosis and treatment of cLBP. This paper provides an overview of the BACPAC research program's goals and overall structure, and describes the harmonization efforts across the consortium, define its research agenda, and develop a collaborative project which utilizes the strengths of the network. The purpose of this paper is to serve as a blueprint for other consortia tasked with the advancement of pain related science.


Subject(s)
Chronic Pain , Low Back Pain , Opioid-Related Disorders , Adult , Humans , Research Design , Analgesics, Opioid/therapeutic use , Advisory Committees , Pain Measurement/methods , Chronic Pain/epidemiology , Low Back Pain/diagnosis , Low Back Pain/therapy , Opioid-Related Disorders/epidemiology , Opioid-Related Disorders/therapy
11.
Contemp Clin Trials ; 126: 107087, 2023 03.
Article in English | MEDLINE | ID: mdl-36657520

ABSTRACT

INTRODUCTION: Both preclinical studies, and more recent clinical imaging studies, suggest that glia-mediated neuroinflammation may be implicated in chronic pain, and therefore might be a potential treatment target. However, it is currently unknown whether modulating neuroinflammation effectively alleviates pain in humans. This trial tests the hypothesis that minocycline, an FDA-approved tetracycline antibiotic and effective glial cell inhibitor in animals, reduces neuroinflammation and may reduce pain symptoms in humans with chronic low back pain. METHODS AND ANALYSIS: This study is a randomized, double-blind, placebo-controlled clinical trial. Subjects, aged 18-75, with a confirmed diagnosis of chronic (≥ six months) low back pain (cLBP) and a self-reported pain rating of at least four out of ten (for at least half of the days during an average week) are enrolled via written, informed consent. Eligible subjects are randomized to receive a 14-day course of either active drug (minocycline) or placebo. Before and after treatment, subjects are scanned with integrated Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) using [11C]PBR28, a second-generation radiotracer for the 18 kDa translocator protein (TSPO), which is highly expressed in glial cells and thus a putative marker of neuroinflammation. Pain levels are evaluated via daily surveys, collected seven days prior to the start of medication, and throughout the 14 days of treatment. General linear models will be used to assess pain levels and determine the treatment effect on brain (and spinal cord) TSPO signal. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov (NCT03106740).


Subject(s)
Chronic Pain , Low Back Pain , Humans , Low Back Pain/diagnostic imaging , Low Back Pain/drug therapy , Minocycline/therapeutic use , Neuroinflammatory Diseases , Chronic Pain/diagnostic imaging , Chronic Pain/drug therapy , Double-Blind Method , Treatment Outcome , Receptors, GABA/metabolism , Receptors, GABA/therapeutic use , Randomized Controlled Trials as Topic
12.
Brain Connect ; 13(1): 15-27, 2023 02.
Article in English | MEDLINE | ID: mdl-35570655

ABSTRACT

Introduction: Poststroke fatigue (PSF) is a disabling condition with unclear etiology. The brain lesion is thought to be an important causal factor in PSF, although focal lesion characteristics such as size and location have not proven to be predictive. Given that the stroke lesion results not only in focal tissue death but also in widespread changes in brain networks that are structurally and functionally connected to damaged tissue, we hypothesized that PSF relates to disruptions in structural and functional connectivity. Materials and Methods: Twelve patients who incurred an ischemic stroke in the middle cerebral artery (MCA) territory 1-3 years prior, and currently experiencing a range of fatigue severity, were enrolled. The patients underwent structural and resting-state functional magnetic resonance imaging (MRI). The structural MRI data were used to measure structural disconnection of gray matter resulting from lesion to white matter pathways. The functional MRI data were used to measure network functional connectivity. Results: The patients showed structural disconnection in varying cortical and subcortical regions. Fatigue severity correlated significantly with structural disconnection of several frontal cortex regions in the ipsilesional (IL) and contralesional hemispheres. Fatigue-related structural disconnection was most severe in the IL rostral middle frontal cortex. Greater structural disconnection of a subset of fatigue-related frontal cortex regions, including the IL rostral middle frontal cortex, trended toward correlating significantly with greater loss in functional connectivity. Among identified fatigue-related frontal cortex regions, only the IL rostral middle frontal cortex showed loss in functional connectivity correlating significantly with fatigue severity. Conclusion: Our results provide evidence that loss in structural and functional connectivity of bihemispheric frontal cortex regions plays a role in PSF after MCA stroke, with connectivity disruptions of the IL rostral middle frontal cortex having a central role. Impact statement Poststroke fatigue (PSF) is a common disabling condition with unclear etiology. We hypothesized that PSF relates to disruptions in structural and functional connectivity secondary to the focal lesion. Using structural and resting-state functional connectivity magnetic resonance imaging (MRI) in patients with chronic middle cerebral artery (MCA) stroke, we found frontal cortex regions in the ipsilesional (IL) and contralesional hemispheres with greater structural disconnection correlating with greater fatigue. Among these fatigue-related cortices, the IL rostral middle frontal cortex showed loss in functional connectivity correlating with fatigue. These findings suggest that disruptions in structural and functional connectivity play a role in PSF after MCA stroke.


Subject(s)
Brain , Stroke , Humans , Magnetic Resonance Imaging , Stroke/complications , Stroke/diagnostic imaging , Frontal Lobe , Fatigue/diagnostic imaging , Fatigue/etiology , Fatigue/pathology
13.
ACS Chem Neurosci ; 13(24): 3661-3667, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36472927

ABSTRACT

Voltage-gated sodium channels (Navs) play a crucial electrical signaling role in neurons. Nav-isoforms present in peripheral sensory neurons and dorsal root ganglia of the spinal cord are critically involved in pain perception and transmission. While these isoforms, particularly Nav1.7, are implicated in neuropathic pain disorders, changes in the functional state and expression levels of these channels have not been extensively studied in vivo. Radiocaine, a fluorine-18 radiotracer based on the local anesthetic lidocaine, a non-selective Nav blocker, has previously been used for cardiac Nav1.5 imaging using positron-emission tomography (PET). In the present study, we used Radiocaine to visualize changes in neuronal Nav expression after neuropathic injury. In rats that underwent unilateral spinal nerve ligation, PET/MR imaging demonstrated significantly higher uptake of Radiocaine into the injured sciatic nerve, as compared to the uninjured sciatic nerve, for up to 32 days post-surgery. Radiocaine, due to its high translational potential, may serve as a novel diagnostic tool for neuropathic pain conditions using PET imaging.


Subject(s)
Neuralgia , Voltage-Gated Sodium Channels , Rats , Animals , Rats, Sprague-Dawley , Spinal Nerves/metabolism , Voltage-Gated Sodium Channels/metabolism , Neuralgia/diagnostic imaging , Neuralgia/metabolism , Ganglia, Spinal/metabolism , Sensory Receptor Cells/metabolism
14.
Front Hum Neurosci ; 16: 1000656, 2022.
Article in English | MEDLINE | ID: mdl-36118965

ABSTRACT

Frida Kahlo (1907-1954) was a Mexican artist who is remembered for her self-portraits, pain and passion, and bold, vibrant colors. This work aims to use her life story and her artistic production in a longitudinal study to examine with quantitative tools the effects of physical and emotional pain (rage) on artistic expression. Kahlo suffered from polio as a child, was involved in a bus accident as a teenager where she suffered multiple fractures of her spine and had 30 operations throughout her lifetime. She also had a tempestuous relationship with her painter husband, Diego Rivera. Her physical and personal troubles however became the texture of her vivid visual vocabulary-usually expressed through the depiction of Mexican and indigenous culture or the female experience and form. We applied color analysis to a series of Frida's self-portraits and revealed a very strong association of physical pain and emotional rage with low wavelength colors (red and yellow), indicating that the expression of her ailments was, consciously or not, achieved by increasing the perceived luminance of the canvas. Further quantitative analysis that used the fractal dimension identified "The broken column" as the portrait with higher compositional complexity, which matches previous critical acclaim of this portrait as the climax of her art. These results confirm the ability of color analysis to extract emotional and cognitive features from artistic work. We suggest that these tools could be used as markers to support artistic and creative interventions in mental health.

15.
Clin J Pain ; 38(12): 721-729, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36136765

ABSTRACT

OBJECTIVES: Aromatase inhibitors (AIs), which potently inhibit estrogen biosynthesis, are a standard treatment for hormone sensitive early-stage breast cancer. AIs have been associated with substantial joint pain and muscle stiffness (aromatase inhibitor-associated musculoskeletal syndrome). However, the link between AIs and number of clinical pain locations and pain sensitivity are less well understood. The aim of this study was to compare longitudinal changes in clinical pain and quantitative pain sensitivity between women who did or did not receive AI therapy. METHODS: Women with early-stage breast cancer were prospectively enrolled and assessed for clinical pain in surgical and nonsurgical body areas using the Brief Pain Inventory and Breast Cancer Pain Questionnaire, and for pain sensitivity using quantitative sensory testing preoperatively and at 1 year postoperatively. Pain outcomes between participants who did and did not begin adjuvant AI therapy were compared using Wilcoxon Signed-Ranks and generalized estimating equation linear regression analyses. RESULTS: Clinical pain and pain sensitivity were comparable between AI (n=49) and no-AI (n=106) groups preoperatively. After adjusting for body mass index, AI therapy was associated with a greater increase in the number of painful nonsurgical body sites (significant time by treatment interaction, P =0.024). Pain location was most frequent in knees (28%), lower back (26%), and ankles/feet (17%). Quantitative sensory testing revealed a significant decrease in pain sensitivity (increased pressure pain threshold) in the no-AI group over time, but not in the AI group. CONCLUSIONS: AI therapy was associated with increased diffuse joint-related pain and greater post-treatment pain sensitivity, potentially implicating central sensitization as a contributing pain mechanism of aromatase inhibitor-associated musculoskeletal syndrome worthy of future investigation.


Subject(s)
Aromatase Inhibitors , Breast Neoplasms , Female , Humans , Aromatase Inhibitors/adverse effects , Breast Neoplasms/complications , Breast Neoplasms/drug therapy , Breast Neoplasms/surgery , Pain Threshold , Pain/drug therapy , Arthralgia/etiology , Arthralgia/drug therapy , Syndrome
16.
Neuroimage Clin ; 36: 103199, 2022.
Article in English | MEDLINE | ID: mdl-36137496

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a deadly neurodegenerative disorder affecting motor neurons in the spinal cord and brain. Studies have reported on atrophy within segments of the cervical cord, but we are not aware of previous investigations of the whole spinal cord. Herein we present our findings from a 3T MRI study involving 32 subjects (15 ALS participants and 17 healthy controls) characterizing cross-sectional area along the entire cord. We report atrophy of the cervical enlargement in ALS participants, but no evidence of atrophy of the thoracolumbar enlargement. These results suggest that MR-based analyses of the cervical cord may be sufficient for in vivo investigations of spinal cord atrophy in ALS, and that atrophy of the cervical enlargement (C4-C7) is a potential imaging marker for quantifying lower motor neuron degradation.


Subject(s)
Amyotrophic Lateral Sclerosis , Cervical Cord , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Magnetic Resonance Imaging/methods , Atrophy/diagnostic imaging , Atrophy/pathology , Motor Neurons/pathology , Cervical Cord/diagnostic imaging , Cervical Cord/pathology
17.
BMJ Open ; 12(9): e063613, 2022 09 19.
Article in English | MEDLINE | ID: mdl-36123113

ABSTRACT

INTRODUCTION: Chronic pain is a debilitating medical problem that is difficult to treat. Neuroinflammatory pathways have emerged as a potential therapeutic target, as preclinical studies have demonstrated that glial cells and neuroglial interactions play a role in the establishment and maintenance of pain. Recently, we used positron emission tomography (PET) to demonstrate increased levels of 18 kDa translocator protein (TSPO) binding, a marker of glial activation, in patients with chronic low back pain (cLBP). Cannabidiol (CBD) is a glial inhibitor in animal models, but studies have not assessed whether CBD reduces neuroinflammation in humans. The principal aim of this trial is to evaluate whether CBD, compared with placebo, affects neuroinflammation, as measured by TSPO levels. METHODS AND ANALYSIS: This is a double-blind, randomised, placebo-controlled, phase II clinical trial. Eighty adults (aged 18-75) with cLBP for >6 months will be randomised to either an FDA-approved CBD medication (Epidiolex) or matching placebo for 4 weeks using a dose-escalation design. All participants will undergo integrated PET/MRI at baseline and after 4 weeks of treatment to evaluate neuroinflammation using [11C]PBR28, a second-generation radioligand for TSPO. Our primary hypothesis is that participants randomised to CBD will demonstrate larger reductions in thalamic [11C]PBR28 signal compared with those receiving placebo. We will also assess the effect of CBD on (1) [11C]PBR28 signal from limbic regions, which our prior work has linked to depressive symptoms and (2) striatal activation in response to a reward task. Additionally, we will evaluate self-report measures of cLBP intensity and bothersomeness, depression and quality of life at baseline and 4 weeks. ETHICS AND DISSEMINATION: This protocol is approved by the Massachusetts General Brigham Human Research Committee (protocol number: 2021P002617) and FDA (IND number: 143861) and registered with ClinicalTrials.gov. Results will be published in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER: NCT05066308; ClinicalTrials.gov.


Subject(s)
Cannabidiol , Low Back Pain , Adult , Brain/diagnostic imaging , Cannabidiol/therapeutic use , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Low Back Pain/diagnostic imaging , Low Back Pain/drug therapy , Neuroinflammatory Diseases , Quality of Life , Randomized Controlled Trials as Topic , Receptors, GABA
18.
Pain Med ; 23(10): 1767-1776, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35482515

ABSTRACT

OBJECTIVE: Expectancies have a well-documented influence on the experience of pain, responses to treatment, and postsurgical outcomes. In individuals with osteoarthritis, several studies have shown that expectations predict increased pain and disability after total knee replacement surgery. Despite the growing recognition of the importance of expectancies in clinical settings, few studies have examined the influence of expectancies throughout postsurgical recovery trajectories. The objective of the present study was to examine the role of presurgical expectancies on pain and function at 6-week, 6-month, and 1-year follow-ups after total knee arthroplasty. DESIGN AND PARTICIPANTS: Data were collected from patients scheduled for total knee arthroplasty 1 week before surgery and then at 6 weeks, 6 months, and 1 year after surgery. Correlational and multivariable regression analyses examined the influence of expectancies on patients' perceptions of pain reduction and functional improvement at each time point. Analyses controlled for age, sex, body mass index, presurgical pain intensity and function, pain catastrophizing, anxiety, and depression. RESULTS: Results revealed that expectancies significantly predicted pain reduction and functional improvement at 1-year follow-up. However, expectancies did not predict outcomes at the 6-week and 6-month follow-ups. Catastrophizing and depressive symptoms emerged as short-term predictors of postsurgical functional limitations at 6-week and 6-month follow-ups, respectively. CONCLUSIONS: The results suggest that targeting high levels of catastrophizing and depressive symptoms could optimize short-term recovery after total knee arthroplasty. However, the results demonstrate that targeting presurgical negative expectancies could prevent prolonged recovery trajectories, characterized by pain and loss of function up to 1 year after total knee arthroplasty.


Subject(s)
Arthroplasty, Replacement, Knee , Osteoarthritis, Knee , Catastrophization , Humans , Pain/surgery , Pain Measurement , Pain, Postoperative/diagnosis , Treatment Outcome
19.
BMC Med Imaging ; 22(1): 62, 2022 04 03.
Article in English | MEDLINE | ID: mdl-35366813

ABSTRACT

BACKGROUND: The establishment of test-retest reliability and reproducibility (TRR) is an important part of validating any research tool, including functional magnetic resonance imaging (fMRI). The primary objective of this study is to investigate the reliability of pseudo-Continuous Arterial Spin Labeling (pCASL) and Blood Oxygen Level Dependent (BOLD) fMRI data acquired across two different scanners in a sample of healthy adults. While single site/single scanner studies have shown acceptable repeatability, TRR of both in a practical multisite study occurring in two facilities spread out across the country with weeks to months between scans is critically needed. METHODS: Ten subjects were imaged with similar 3 T MRI scanners at the University of Pittsburgh and Massachusetts General Hospital. Finger-tapping and Resting-state data were acquired for both techniques. Analysis of the resting state data for functional connectivity was performed with the Functional Connectivity Toolbox, while analysis of the finger tapping data was accomplished with FSL. pCASL Blood flow data was generated using AST Toolbox. Activated areas and networks were identified via pre-defined atlases and dual-regression techniques. Analysis for TRR was conducted by comparing pCASL and BOLD images in terms of Intraclass correlation coefficients, Dice Similarity Coefficients, and repeated measures ANOVA. RESULTS: Both BOLD and pCASL scans showed strong activation and correlation between the two locations for the finger tapping tasks. Functional connectivity analyses identified elements of the default mode network in all resting scans at both locations. Multivariate repeated measures ANOVA showed significant variability between subjects, but no significant variability for location. Global CBF was very similar between the two scanning locations, and repeated measures ANOVA showed no significant differences between the two scanning locations. CONCLUSIONS: The results of this study show that when similar scanner hardware and software is coupled with identical data analysis protocols, consistent and reproducible functional brain images can be acquired across sites. The variability seen in the activation maps is greater for pCASL versus BOLD images, as expected, however groups maps are remarkably similar despite the low number of subjects. This demonstrates that multi-site fMRI studies of task-based and resting state brain activity is feasible.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Adult , Cerebrovascular Circulation/physiology , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results , Rest/physiology , Spin Labels
20.
Article in English | MEDLINE | ID: mdl-35140142

ABSTRACT

BACKGROUND AND OBJECTIVES: The presence of HIV in the CNS has been related to chronic immune activation and cognitive dysfunction. The aim of this work was to investigate (1) the presence of neuroinflammation in aviremic people with HIV (PWH) on therapy and in nontreated aviremic PWH (elite controllers [ECs]) using a translocator protein 18 kDa radioligand; (2) the relationship between neuroinflammation and cognitive function in aviremic PWH; and (3) the relationship between [11C]-PBR28 signal and quantitative MRI (qMRI) measures of brain tissue integrity such as T1 and T2 relaxation times (rts). METHODS: [11C]-PBR28 (standard uptake value ratio, SUVR) images were generated in 36 participants (14 PWH, 6 ECs, and 16 healthy controls) using a statistically defined pseudoreference region. Group comparisons of [11C]-PBR28 SUVR were performed using region of interest-based and voxelwise analyses. The relationship between inflammation, qMRI measures, and cognitive function was studied. RESULTS: In region of interest analyses, ECs exhibited significantly lower [11C]-PBR28 signal in the thalamus, putamen, superior temporal gyrus, prefrontal cortex, and cerebellum compared with the PWH. In voxelwise analyses, differences were observed in the thalamus, precuneus cortex, inferior temporal gyrus, occipital cortex, cerebellum, and white matter (WM). [11C]-PBR28 signal in the WM and superior temporal gyrus was related to processing speed and selective attention in PWH. In a subset of PWH (n = 12), [11C]-PBR28 signal in the thalamus and WM regions was related to a decrease in T2 rt and to an increase in T1 rt suggesting a colocalization of increased glial metabolism, decrease in microstructural integrity, and iron accumulation. DISCUSSION: This study casts a new light onto the role of neuroinflammation and related microstructural alterations of HIV infection in the CNS and shows that ECs suppress neuroinflammation more effectively than PWH on therapy.


Subject(s)
Anti-Retroviral Agents/pharmacology , Brain Diseases , Cognitive Dysfunction , HIV Infections , HIV Non-Progressors , Neuroimaging , Neuroinflammatory Diseases , Aged , Brain Diseases/diagnostic imaging , Brain Diseases/drug therapy , Brain Diseases/pathology , Brain Diseases/virology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/physiopathology , Female , HIV Infections/diagnostic imaging , HIV Infections/drug therapy , HIV Infections/pathology , HIV Infections/virology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multimodal Imaging , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/virology , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...