Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol ; 24(1): 171-83, 1994 Jan.
Article in English | MEDLINE | ID: mdl-8111015

ABSTRACT

Attachment of Rhizobium and Agrobacterium bacteria to cells of their host plants is a two-step process. The first step, direct attachment of bacteria to the plant cell wall, is mediated by the bacterial protein rhicadhesin. A putative plant receptor molecule for rhicadhesin was purified from cell walls of pea roots using a bioassay based on suppression of rhicadhesin activity. This molecule appeared to be sensitive to treatments with pronase or glycosidase. Its isoelectric point is 6.4, and its apparent molecular mass was estimated to be 32 kDa before and 29 kDa after glycosidase treatment, as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and ultrafiltration. The sequence of the first 29 N-terminal amino acids was determined: A-D-A-D-A-L-Q-D-L-C(?)-V-A-D-Y-A-S-V-I-L- V-N-G-F-A-S-K(Q)-(P/Q)-(L)-(I). No homology with known proteins was found. In the course of this research project the extracellular matrix protein vitronectin was reported to inhibit attachment of A. tumefaciens to carrot cells [29]. A variety of adhesive proteins, including vitronectin, contain a common cell attachment determinant with the sequence R-G-D. Since we could not detect other cell wall components able to suppress rhicadhesin activity, and since an R-G-D containing hexapeptide was also active as a receptor, we speculate that the plant receptor for rhicadhesin is a glycoprotein containing an R-G-D attachment site.


Subject(s)
Bacterial Proteins/metabolism , Fabaceae/chemistry , Glycoproteins/isolation & purification , Plant Proteins/isolation & purification , Plants, Medicinal , Amino Acid Sequence , Amino Acids/analysis , Bacterial Adhesion , Electrophoresis, Polyacrylamide Gel , Fabaceae/metabolism , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycosylation , Isoelectric Point , Molecular Sequence Data , Oligopeptides/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Rhizobiaceae
2.
J Bacteriol ; 171(7): 4054-62, 1989 Jul.
Article in English | MEDLINE | ID: mdl-2738027

ABSTRACT

The Ca2+-dependent adhesin which mediates the first step in attachment of bacteria of the family Rhizobiaceae to plant root hair tips was isolated from the surface of Rhizobium leguminosarum biovar viciae cells; its ability to inhibit attachment of R. leguminosarum to pea root hair tips was used as a bioassay. Isolated adhesin was found to be able to inhibit attachment of both carbon-limited and manganese-limited R. leguminosarum cells. A multicolumn purification procedure was developed which resulted in pure adhesin, as judged from silver staining of isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electropherograms. The crucial step in purification was the elution of rhizobial proteins by a CaCl2 gradient from a hydroxyapatite matrix. The specific activity increased 1,250 times during purification. The isoelectric point of the adhesin was determined to be 5.1, and the molecular mass was 14 kilodaltons (kDa), as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By using gel filtration in the presence and absence of Ca2+, the molecular mass of the adhesin was determined to be 15 and 6 kDa, respectively. The adhesin appeared to be a calcium-binding protein. The purified adhesin inhibited attachment of various other rhizobia to pea root hair tips. Also, cell surface preparations of several other rhizobial strains, including Agrobacterium, Bradyrhizobium, and Phyllobacterium spp., showed adhesin activity, suggesting that a common plant receptor is used for attachment of Rhizobiaceae cells and that the adhesin is common among Rhizobiaceae. No attachment-inhibiting activity was detected in cell surface preparations from various other bacterial strains tested. Cell surface preparations from Sym or Ti plasmid-cured Rhizobium and Agrobacterium strains, respectively, also showed adhesin activity, indicating that Sym or Ti plasmid-borne genes are not required for the synthesis and biogenesis of the adhesin. The adhesin was also found to be involved in the attachment of rhizobia to the root hairs of various other legumes and nonlegume plants, including monocotyledonous ones. Since the adhesin appears to be specific for Rhizobiaceae and is Ca2+ dependent, we propose to designate it rhicadhesin. A more detailed model for rhizobial attachment to plant root hairs is discussed.


Subject(s)
Adhesins, Bacterial , Bacterial Adhesion , Bacterial Proteins/isolation & purification , Fabaceae/physiology , Plants, Medicinal , Rhizobium/physiology , Bacterial Proteins/physiology , Calcium-Binding Proteins/isolation & purification , Calcium-Binding Proteins/physiology , Electrophoresis, Polyacrylamide Gel , Isoelectric Focusing , Rhizobium/chemistry
3.
Anal Biochem ; 140(1): 48-55, 1984 Jul.
Article in English | MEDLINE | ID: mdl-6486415

ABSTRACT

An enzyme-linked lectin binding assay (ELBA) has been developed for the detection of soluble lectin binding substances (receptors) and the determination of their relative affinity for the lectin. The assay is based on competitive binding to enzyme-labeled lectin of a known lectin receptor, bound to a solid phase, and unknown sample receptors. In this paper the assay is exemplified with the mannose/glucose-specific pea lectin, with the glycoprotein ovalbumin as its receptor, and with horseradish peroxidase (EC 1.11.1.7) as the enzyme used for labeling. Also a method was developed for the preparation of peroxidase-labeled lectin. Labeling was started by mixing equimolar amounts of lectin and periodate-oxidized enzyme at pH 4.5 at a final concentration of 10(-4)M, after which conjugation was started by raising the pH to 9.5. This resulted in complete conjugation, after which the product could be diluted 50-500 times for application in ELBA. For the ELBA ovalbumin was adsorbed onto polystyrene microtiter plates. Sample receptors, added together with the enzyme-labeled lectin, inhibited binding of the latter to ovalbumin. Bound enzyme activity was colorimetrically determined after addition of o-phenylenediamine. Relative lectin affinity (KL) was expressed as (formula; see text) in which [X]50% is the concentration of sample receptor necessary to inhibit 50% of the binding of a certain amount of lectin, and [M]50% is the concentration of D-mannose necessary to inhibit 50% binding of the same amount of lectin. With this technique lectin affinity of both monovalent and polyvalent lectin binding substances can be estimated: low KL values mean high lectin affinity.


Subject(s)
Horseradish Peroxidase , Peroxidases , Receptors, Mitogen/analysis , Binding, Competitive , Chemical Phenomena , Chemistry , Fabaceae , Hydrogen-Ion Concentration , Plants, Medicinal , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...