Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(6): 107272, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38588812

ABSTRACT

Wolbachia pipientis is a maternally transmitted symbiotic bacterium that mainly colonizes arthropods, potentially affecting different aspects of the host's physiology, e.g., reproduction, immunity, and metabolism. It has been shown that Wolbachia modulates glycogen metabolism in mosquito Aedes fluviatilis (Ae. fluviatilis). Glycogen synthesis is controlled by the enzyme GSK3, which is also involved in immune responses in both vertebrate and invertebrate organisms. Here we investigated the mechanisms behind immune changes mediated by glycogen synthase kinase ß (GSK3ß) in the symbiosis between Ae. fluviatilis and W. pipientis using a GSK3ß inhibitor or RNAi-mediated gene silencing. GSK3ß inhibition or knockdown increased glycogen content and Wolbachia population, together with a reduction in Relish2 and gambicin transcripts. Furthermore, knockdown of Relish2 or Caspar revealed that the immunodeficiency pathway acts to control Wolbachia numbers in the host. In conclusion, we describe for the first time the involvement of GSK3ß in Ae. fluviatilis immune response, acting to control the Wolbachia endosymbiotic population.

2.
Front Physiol ; 14: 1287090, 2023.
Article in English | MEDLINE | ID: mdl-38046951

ABSTRACT

The enzyme glucose-6-phosphate dehydrogenase (G6PDH) plays crucial roles in glucose homeostasis and the pentose phosphate pathway (PPP), being also involved in redox metabolism. The PPP is an important metabolic pathway that produces ribose and nicotinamide adenine dinucleotide phosphate (NADPH), which are essential for several physiologic and biochemical processes, such as the synthesis of fatty acids and nucleic acids. As a rate-limiting step in PPP, G6PDH is a highly conserved enzyme and its deficiency can lead to severe consequences for the organism, in particular for cell growth. Insufficient G6PDH activity can lead to cell growth arrest, impaired embryonic development, as well as a reduction in insulin sensitivity, inflammation, diabetes, and hypertension. While research on G6PDH and PPP has historically focused on mammalian models, particularly human disorders, recent studies have shed light on the regulation of this enzyme in arthropods, where new functions were discovered. This review will discuss the role of arthropod G6PDH in regulating redox homeostasis and immunometabolism and explore potential avenues for further research on this enzyme in various metabolic adaptations.

3.
Ticks Tick Borne Dis ; 14(6): 102251, 2023 11.
Article in English | MEDLINE | ID: mdl-37708803

ABSTRACT

Studies on the transcriptional control of gene expression are crucial to understand changes in organism's physiological or cellular conditions. To obtain reliable data on mRNA amounts and the estimation of gene expression levels, it is crucial to normalize the target gene with one or more internal reference gene(s). However, the use of constitutive genes as reference genes is controversial, as their expression patterns are sometimes more complex than previously thought. In various arthropod vectors, including ticks, several constitutive genes have been identified by studying gene expression in different tissues and life stages. The cattle tick Rhipicephalus microplus is a major vector for several pathogens and is widely distributed in tropical and subtropical regions globally. Tick developmental physiology is an essential aspect of research, particularly embryogenesis, where many important developmental events occur, thus the identification of stable reference genes is essential for the interpretation of reliable gene expression data. This study aimed to identify and select R. microplus housekeeping genes and evaluate their stability during embryogenesis. Reference genes used as internal control in molecular assays were selected based on previous studies. These genes were screened by quantitative PCR (qPCR) and tested for gene expression stability during embryogenesis. Results demonstrated that the relative stability of reference genes varied at different time points during the embryogenesis. The GeNorm tool showed that elongation factor 1α (Elf1a) and ribosomal protein L4 (Rpl4) were the most stable genes, while H3 histone family 3A (Hist3A) and ribosomal protein S18 (RpS18) were the least stable. The NormFinder tool showed that Rpl4 was the most stable gene, while the ranking of Elf1a was intermediate in all tested conditions. The BestKeeper tool showed that Rpl4 and cyclophilin A (CycA) were the more and less stable genes, respectively. These data collectively demonstrate that Rpl4, Elf1a, and GAPDH are suitable internal controls for normalizing qPCR during R. microplus embryogenesis. These genes were consistently identified as the most stable in various analysis methods employed in this study. Thus, findings presented in this study offer valuable information for the study of gene expression during embryogenesis in R. microplus.


Subject(s)
Rhipicephalus , Animals , Rhipicephalus/genetics , Reverse Transcriptase Polymerase Chain Reaction , Arthropod Vectors , Biological Assay , Embryonic Development/genetics
4.
Insect Biochem Mol Biol ; 160: 103986, 2023 09.
Article in English | MEDLINE | ID: mdl-37454751

ABSTRACT

The fat body is responsible for a variety of functions related to energy metabolism in arthropods, by controlling the processes of de novo glucose production (gluconeogenesis) and glycogen metabolism. The rate-limiting factor of gluconeogenesis is the enzyme phosphoenolpyruvate carboxykinase (PEPCK), generally considered to be the first committed step in this pathway. Although the study of PEPCK and gluconeogenesis has been for decades restricted to mammalian models, especially focusing on muscle and liver tissue, current research has demonstrated particularities about the regulation of this enzyme in arthropods, and described new functions. This review will focus on arthropod PEPCK, discuss different aspects to PEPCK regulation and function, its general role in the regulation of gluconeogenesis and other pathways. The text also presents our views on potentially important new directions for research involving this enzyme in a variety of metabolic adaptations (e.g. diapause), discussing enzyme isoforms, roles during arthropod embryogenesis, as well as involvement in vector-pathogen interactions, contributing to a better understanding of insect vectors of diseases and their control.


Subject(s)
Arthropods , Animals , Arthropods/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Glucose/metabolism , Homeostasis , Mammals/metabolism
5.
Animals (Basel) ; 13(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37370541

ABSTRACT

Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-antigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field.

6.
Ticks Tick Borne Dis ; 14(3): 102123, 2023 05.
Article in English | MEDLINE | ID: mdl-36716581

ABSTRACT

Acaricide resistance is a global problem that has impacts worldwide. Tick populations with broad resistance to all commercially available acaricides have been reported. Since resistance selection in ticks and their role in pathogen transmission to animals and humans result in important economic and public health burden, it is essential to develop new strategies for their control (i.e., novel chemical compounds, vaccines, biological control). The synganglion is the tick central nervous system and it is responsible for synthesizing and releasing signaling molecules with different physiological functions. Synganglion proteins are the targets of the majority of available acaricides. In this review we provide an overview of the mode-of-action and resistance mechanisms against neurotoxic acaricides in ticks, as well as putative target sites in synganglion, as a supporting tool to identify new target proteins and to develop new strategies for tick control.


Subject(s)
Acaricides , Cattle Diseases , Ixodidae , Rhipicephalus , Tick Infestations , Vaccines , Animals , Humans , Cattle , Acaricides/pharmacology , Tick Control , Tick Infestations/prevention & control , Tick Infestations/veterinary , Cattle Diseases/prevention & control
7.
Ticks Tick Borne Dis ; 13(4): 101963, 2022 07.
Article in English | MEDLINE | ID: mdl-35569365

ABSTRACT

Borrelia miyamotoi infection is an emerging tick-borne disease that causes hard tick-borne relapsing fever. B. miyamotoi is transmitted through the bite of ticks, including Ixodes persulcatus. Although accumulating evidence suggests that tick salivary proteins enhance the infectivity of other tick-borne pathogens, the association of B. miyamotoi with tick-derived proteins remains unknown. In this study, the effect of I. persulcatus sialostatin L2 (Ip-sL2), a tick-derived cystatin, on specific immunity to B. miyamotoi was preliminarily investigated in vitro. Mice were immunized with heat-killed B. miyamotoi and in vitro analyses of the splenocytes of the immunized mice indicated that the expression levels of the activation markers of CD11c+ and CD3+ cells were significantly upregulated by B. miyamotoi stimulation. Spleen cells from B. miyamotoi-immunized mice were used to determine whether Ip-sL2 regulates murine immune responses against B. miyamotoi. Treatment with Ip-sL2 in vitro inhibited the activation of CD11c+ and CD3+ cells as well as inflammatory cytokine production by cultured splenocytes. These findings show that Ip-sL2 has modulatory effects on murine immune responses to B. miyamotoi. Therefore, it is necessary to clarify in the future whether Ip-sL2 is involved in the enhanced infectivity of B. miyamotoi.


Subject(s)
Borrelia , Ixodes , Relapsing Fever , Tick-Borne Diseases , Animals , Arthropod Proteins , Ixodes/physiology , Mice
8.
Insect Biochem Mol Biol ; 146: 103776, 2022 07.
Article in English | MEDLINE | ID: mdl-35526745

ABSTRACT

Wolbachia pipientis is a maternally transmitted bacterium that mostly colonizes arthropods, including the mosquito Aedes fluviatilis, potentially affecting different aspects of host physiology. This intracellular bacterium prefers gonadal tissue cells, interfering with the reproductive cycle of insects, arachnids, crustaceans, and nematodes. Wolbachia's ability to modulate the host's reproduction is related to its success in prevalence and frequency. Infecting oocytes is essential for vertical propagation, ensuring its presence in the germline. The mosquito Ae. fluviatilis is a natural host for this bacterium and therefore represents an excellent experimental model in the effort to understand host-symbiont interactions and the mutual metabolic regulation. The aim of this study was to comparatively describe metabolic changes in naturally Wolbachia-infected and uninfected ovaries of Ae. fluviatilis during the vitellogenic period of oogenesis, thus increasing the knowledge about Wolbachia parasitic/symbiotic mechanisms.


Subject(s)
Aedes , Wolbachia , Aedes/microbiology , Animals , Oogenesis , Symbiosis/physiology , Wolbachia/physiology
10.
J Biol Chem ; 298(3): 101599, 2022 03.
Article in English | MEDLINE | ID: mdl-35063504

ABSTRACT

Carbohydrate metabolism not only functions in supplying cellular energy but also has an important role in maintaining physiological homeostasis and in preventing oxidative damage caused by reactive oxygen species. Previously, we showed that arthropod embryonic cell lines have high tolerance to H2O2 exposure. Here, we describe that Rhipicephalus microplus tick embryonic cell line (BME26) employs an adaptive glucose metabolism mechanism that confers tolerance to hydrogen peroxide at concentrations too high for other organisms. This adaptive mechanism sustained by glucose metabolism remodeling promotes cell survival and redox balance in BME26 cell line after millimolar H2O2 exposure. The present work shows that this tick cell line could tolerate high H2O2 concentrations by initiating a carbohydrate-related adaptive response. We demonstrate that gluconeogenesis was induced as a compensation strategy that involved, among other molecules, the metabolic enzymes NADP-ICDH, G6PDH, and PEPCK. We also found that this phenomenon was coupled to glycogen accumulation and glucose uptake, supporting the pentose phosphate pathway to sustain NADPH production and leading to cell survival and proliferation. Our findings suggest that the described response is not atypical, being also observed in cancer cells, which highlights the importance of this model to all proliferative cells. We propose that these results will be useful in generating basic biological information to support the development of new strategies for disease treatment and parasite control.


Subject(s)
Glucose , Rhipicephalus , Animals , Cell Line , Gluconeogenesis , Glucose/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , NADP/metabolism , Oxidation-Reduction , Rhipicephalus/metabolism
11.
Sci Rep ; 11(1): 19202, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584163

ABSTRACT

In the present work, we established two novel embryonic cell lines from the mosquito Aedes fluviatilis containing or not the naturally occurring symbiont bacteria Wolbachia, which were called wAflu1 and Aflu2, respectively. We also obtained wAflu1 without Wolbachia after tetracycline treatment, named wAflu1.tet. Morphofunctional characterization was performed to help elucidate the symbiont-host interaction in the context of energy metabolism regulation and molecular mechanisms of the immune responses involved. The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells. Additionally, innate immunity mechanisms were activated, showing that the wAflu1 and wAflu1.tet cells are responsive after the stimulus using Gram negative bacteria. Therefore, this work confirms the natural, mutually co-regulating symbiotic relationship between W. pipientis and A. fluviatilis, modulating the host metabolism and immune pathway activation. The results presented here add important resources to the current knowledge of Wolbachia-arthropod interactions.


Subject(s)
Aedes/microbiology , Immunity, Innate , Wolbachia/immunology , Aedes/immunology , Aedes/metabolism , Animals , Cell Line , Female , Host Microbial Interactions/immunology , Symbiosis/immunology
12.
Metabolomics ; 17(9): 79, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34463832

ABSTRACT

INTRODUCTION: Metabolomic approaches can assess the actual state of an organism's energy metabolism during a specific morphological event, providing a more accurate insight into the correlations between physiology and metabolic regulation. METHODS: The study of the metabolomic profile aim to identify the largest possible number of biomolecules in a certain organism or specific structures. For this purpose, mass spectrometry (MS) and chromatography have been used in the present study. OBJECTIVES: In this context, the aim of the present work is to evaluate the glucose metabolomic profile during embryogenesis in Rhipicephalus microplus tick, investigating the dynamics of nutrient utilization during tick embryo formation, as well as the control of glucose metabolism. RESULTS: We show that glycogen reserves are preferentially mobilized to sustain the energy-intensive process of embryogenesis. Subsequently, the increase in concentration of specific amino acids indicates that protein degradation would provide carbons to fuel gluconeogenesis, supplying the embryo with sufficient glucose and glycogen during development. CONCLUSION: Altogether, these results demonstrated the presence of a very refined catabolic and anabolic control during embryogenesis in R. microplus tick, suggesting the pronounced gluconeogenesis as a strategy to secure embryo development. Moreover, this research contributes to the understanding of the mechanisms that control glucose metabolism during tick embryogenesis and may aid the identification of putative targets for novel chemical or immunological control methods, which are essential to improve the prevention of tick infestations.


Subject(s)
Rhipicephalus , Tick Infestations , Animals , Embryonic Development , Glucose , Glycogen
13.
Article in English | MEDLINE | ID: mdl-34015437

ABSTRACT

The mosquito Aedes aegypti undertakes a shift in carbohydrate metabolism during embryogenesis, including an increase in the activity of phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, at critical steps of embryo development. All eukaryotes studied to date present two PEPCK isoforms, namely PEPCK-M (mitochondrial) and PEPCK-C (cytosolic). In A. aegypti, however, these proteins are so far uncharacterized. In the present work we describe two A. aegypti PEPCK isoforms by sequence alignment, protein modeling, and transcription analysis in different tissues, as well as PEPCK enzymatic activity assays in mitochondrial and cytoplasmic compartments during oogenesis and embryogenesis. First, we characterized the protein sequences compared to other organisms, and identified conserved sites and key amino acids. We also performed structure modeling for AePEPCK(M) and AePEPCK(C), identifying highly conserved structural sites, as well as a signal peptide in AePEPCK(M) localized in a very hydrophobic region. Moreover, after blood meal and during mosquito oogenesis and embryogenesis, both PEPCKs isoforms showed different transcriptional profiles, suggesting that mRNA for the cytosolic form is transmitted maternally, whereas the mitochondrial form is synthesized by the zygote. Collectively, these results improve our understanding of mosquito physiology and may yield putative targets for developing new methods for A. aegypti control.


Subject(s)
Cytosol/metabolism , Embryonic Development , Gene Expression Regulation, Developmental , Gluconeogenesis , Glucose/metabolism , Oogenesis , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Aedes , Amino Acid Sequence , Animals , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phylogeny , Protein Isoforms , Sequence Homology
15.
Exp Appl Acarol ; 83(4): 597-608, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33625626

ABSTRACT

The indiscriminate use of acaricides is a problem worldwide and has increased the selection of acaricide-resistant tick populations. The goal of this study was to evaluate the acaricide effects of two essential oils (from Schinus molle and Bulnesia sarmientoi) using the larval immersion test on three Rhipicephalus tick species. Rhipicephalus evertsi, Rhipicephalus appendiculatus and Rhipicephalus pulchelus ticks collected in Kenya, without history of acaricide exposure, were tested, as well as individuals from two populations of Rhipicephalus microplus (with or without history of acaricide exposure), for comparison. The sample most resistant to the treatments was a population of R. microplus with previous acaricide exposure, whereas the least tolerant sample was a strain of the same species that never had contact with acaricides (Porto Alegre strain). Interestingly, the field tick samples without previous acaricide exposure responded to essential oils with a mortality profile resembling that observed in the acaricide-resistant R. microplus field population, and not the susceptible Porto Alegre strain. The essential oil of B. sarmientoi and its two components tested (guaiol and bulnesol) caused the highest mortality rates in the tested species and are potential molecules for future studies on control methods against these species.


Subject(s)
Acaricides , Oils, Volatile , Rhipicephalus , Tick Infestations , Acaricides/pharmacology , Animals , Kenya , Oils, Volatile/pharmacology
16.
Sci Rep ; 11(1): 1063, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441793

ABSTRACT

The tick Rhipicephalus microplus is a harmful parasite of cattle that causes considerable economic losses to the cattle breeding industry. Although R. microplus saliva (Rm-saliva) contains several immunosuppressants, any association between Rm-saliva and the expression of immunoinhibitory molecules, such as programmed death (PD)-1 and PD-ligand 1 (PD-L1), has not been described. In this study, flow cytometric analyses revealed that Rm-saliva upregulated PD-1 expression in T cells and PD-L1 expression in CD14+ and CD11c+ cells in cattle. Additionally, Rm-saliva decreased CD69 expression in T cells and Th1 cytokine production from peripheral blood mononuclear cells. Furthermore, PD-L1 blockade increased IFN-γ production in the presence of Rm-saliva, suggesting that Rm-saliva suppresses Th1 responses via the PD-1/PD-L1 pathway. To reveal the upregulation mechanism of PD-1/PD-L1 by Rm-saliva, we analyzed the function of prostaglandin E2 (PGE2), which is known as an inducer of PD-L1 expression, in Rm-saliva. We found that Rm-saliva contained a high concentration of PGE2, and PGE2 treatment induced PD-L1 expression in CD14+ cells in vitro. Immunohistochemical analyses revealed that PGE2 and PD-L1 expression was upregulated in tick-attached skin in cattle. These data suggest that PGE2 in Rm-saliva has the potential to induce the expression of immunoinhibitory molecules in host immune cells.


Subject(s)
B7-H1 Antigen/metabolism , Host-Parasite Interactions , Immune Tolerance , Programmed Cell Death 1 Receptor/metabolism , Rhipicephalus/physiology , Saliva/physiology , Tick Bites/veterinary , Animals , Cattle/metabolism , Cattle/parasitology , Dinoprostone/metabolism , Flow Cytometry , Metabolic Networks and Pathways , Th1 Cells/physiology , Tick Bites/immunology , Tick Bites/metabolism
17.
Sci Rep ; 10(1): 18296, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106528

ABSTRACT

To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks , Rhipicephalus/physiology , Animals , Cattle , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Organ Specificity , Ovary/chemistry , Pregnancy , Rhipicephalus/genetics , Saliva/chemistry , Sequence Analysis, RNA
18.
Ticks Tick Borne Dis ; 11(6): 101547, 2020 11.
Article in English | MEDLINE | ID: mdl-32993953

ABSTRACT

Ferritin 2 (FER2) is an iron storage protein, which has been shown to be critical for iron homeostasis during blood feeding and reproduction in ticks and is therefore suitable as a component for anti-tick vaccines. In this study, we identified the FER2 of Ixodes persulcatus, a major vector for zoonotic diseases such as Lyme borreliosis and tick-borne relapsing fever in Japan, and investigated its functions. Ixodes persulcatus-derived ferritin 2 (Ip-FER2) showed concentration-dependent iron-binding ability and high amino acid conservation, consistent with FER2s of other tick species. Vaccines containing the recombinant Ip-FER2 elicited a significant reduction of the engorgement weight of adult I. persulcatus. Interestingly, the reduction of engorgement weight was also observed in Ixodes ovatus, a sympatric species of I. persulcatus. In silico analyses of FER2 sequences of I. persulcatus and other ticks showed a greater similarity with I. scapularis and I. ricinus and lesser similarity with Hyalomma anatolicum, Haemaphysalis longicornis, Rhipicephalus microplus, and R. appendiculatus. Moreover, it was observed that the tick FER2 sequences possess conserved regions within the primary structures, and in silico epitope mapping analysis revealed that antigenic regions were also conserved, particularly among Ixodes spp ticks. In conclusion, the data support further protective tick vaccination applications using the Ip-FER2 antigens identified herein.


Subject(s)
Arthropod Proteins/genetics , Ferritins/genetics , Ixodes/genetics , Vaccines/genetics , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Base Sequence , Ferritins/chemistry , Ferritins/metabolism , Ixodes/metabolism , Phylogeny , Sequence Alignment , Vaccines/analysis
19.
Int J Parasitol ; 50(12): 931-943, 2020 10.
Article in English | MEDLINE | ID: mdl-32668271

ABSTRACT

Protease inhibitors play crucial roles in parasite development and survival, modulating the immune responses of their vertebrate hosts. Members of the serpin family are irreversible inhibitors of serine proteases and regulate systems related to defence against parasites. Limited information is currently available on protease inhibitors from the liver fluke Fasciola hepatica. In this study, we characterised four serpins from F. hepatica (FhS-1-FhS-4). Biochemical characterisation revealed that recombinant FhS-2 (rFhS) inhibits the activity of human neutrophil cathepsin G, while rFhS-4 inhibits the activity of bovine pancreatic chymotrypsin and cathepsin G. Consistent with inhibitor function profiling data, rFhS-4 inhibited cathepsin G-activated platelet aggregation in a dose-responsive manner.Similar to other serpins, rFhS2 and rFhS-4 bind to heparin with high affinity. Tissue localisation demonstrated that these serpins have different spatial distributions. FhS-2 is localised in the ovary, while FhS-4 was found in gut cells. Both of them co-localised in the spines within the tegument. These findings provide the basis for study of functional roles of these proteins as part of an immune evasion mechanism in the adult fluke, and in protection of eggs to ensure parasite life cycle continuity. Further understanding of serpins from the liver fluke may lead to the discovery of novel anti-parasitic interventions.


Subject(s)
Fasciola hepatica , Host-Parasite Interactions , Serpins , Animals , Cathepsin G/antagonists & inhibitors , Cattle , Chymotrypsin/antagonists & inhibitors , Fasciola hepatica/enzymology , Female , Humans
20.
Insect Biochem Mol Biol ; 118: 103307, 2020 03.
Article in English | MEDLINE | ID: mdl-31857215

ABSTRACT

Several research groups around the world have studied diverse aspects of energy metabolism in arthropod disease vectors, with the aim of discovering potential control targets. As in all oviparous organisms, arthropod embryonic development is characterized by the mobilization of maternally-derived metabolites for the formation of new tissues and organs. Glycogen synthase kinase-3 (GSK-3) is a serine-threonine kinase described as an important regulator of metabolism and development in a wide range of organisms. GSK-3 was first identified based on its action upon glycogen synthase, a central enzyme in glycogen biosynthesis. Currently, it is recognized as a key component of multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, cell migration, and immune response. The present review will describe the current knowledge on GSK-3 activation and its role in morphogenesis and embryonic metabolism in arthropods. Altogether, the information discussed here can spark new approaches and strategies for further studies, enhancing our understanding of these important arthropod vectors and strengthening the resources in the search for novel control methods.


Subject(s)
Arthropod Proteins/genetics , Arthropods/genetics , Embryonic Development/genetics , Glycogen Synthase Kinase 3/genetics , Morphogenesis/genetics , Animals , Arthropod Proteins/metabolism , Arthropods/embryology , Arthropods/metabolism , Embryo, Nonmammalian/metabolism , Glycogen Synthase Kinase 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...