Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
2.
Nature ; 629(8010): 211-218, 2024 May.
Article in English | MEDLINE | ID: mdl-38600391

ABSTRACT

A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states.


Subject(s)
Forkhead Box Protein O1 , Immunologic Memory , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Animals , Humans , Mice , Cell Line, Tumor , Chromatin/metabolism , Chromatin/genetics , Forkhead Box Protein O1/metabolism , Gene Editing , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology
3.
Nat Med ; 30(5): 1320-1329, 2024 May.
Article in English | MEDLINE | ID: mdl-38480922

ABSTRACT

Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423 .


Subject(s)
ErbB Receptors , Glioblastoma , Immunotherapy, Adoptive , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Humans , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Interleukin-13 Receptor alpha2 Subunit/immunology , Middle Aged , Male , Receptors, Chimeric Antigen/immunology , Female , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Adult , Aged , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Injections, Spinal , Maximum Tolerated Dose
4.
Nat Cancer ; 5(3): 517-531, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38216766

ABSTRACT

We previously showed that chimeric antigen receptor (CAR) T-cell therapy targeting epidermal growth factor receptor variant III (EGFRvIII) produces upregulation of programmed death-ligand 1 (PD-L1) in the tumor microenvironment (TME). Here we conducted a phase 1 trial (NCT03726515) of CAR T-EGFRvIII cells administered concomitantly with the anti-PD1 (aPD1) monoclonal antibody pembrolizumab in patients with newly diagnosed, EGFRvIII+ glioblastoma (GBM) (n = 7). The primary outcome was safety, and no dose-limiting toxicity was observed. Secondary outcomes included median progression-free survival (5.2 months; 90% confidence interval (CI), 2.9-6.0 months) and median overall survival (11.8 months; 90% CI, 9.2-14.2 months). In exploratory analyses, comparison of the TME in tumors harvested before versus after CAR + aPD1 administration demonstrated substantial evolution of the infiltrating myeloid and T cells, with more exhausted, regulatory, and interferon (IFN)-stimulated T cells at relapse. Our study suggests that the combination of CAR T cells and PD-1 inhibition in GBM is safe and biologically active but, given the lack of efficacy, also indicates a need to consider alternative strategies.


Subject(s)
Antibodies, Monoclonal, Humanized , Glioblastoma , Humans , Glioblastoma/therapy , ErbB Receptors , Neoplasm Recurrence, Local/metabolism , T-Lymphocytes , Tumor Microenvironment
5.
Cytotherapy ; 25(6): 670-682, 2023 06.
Article in English | MEDLINE | ID: mdl-36849306

ABSTRACT

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T cells have demonstrated remarkable efficacy against hematological malignancies; however, they have not experienced the same success against solid tumors such as glioblastoma (GBM). There is a growing need for high-throughput functional screening platforms to measure CAR T-cell potency against solid tumor cells. METHODS: We used real-time, label-free cellular impedance sensing to evaluate the potency of anti-disialoganglioside (GD2) targeting CAR T-cell products against GD2+ patient-derived GBM stem cells over a period of 2 days and 7 days in vitro. We compared CAR T products using two different modes of gene transfer: retroviral transduction and virus-free CRISPR-editing. Endpoint flow cytometry, cytokine analysis and metabolomics data were acquired and integrated to create a predictive model of CAR T-cell potency. RESULTS: Results indicated faster cytolysis by virus-free CRISPR-edited CAR T cells compared with retrovirally transduced CAR T cells, accompanied by increased inflammatory cytokine release, CD8+ CAR T-cell presence in co-culture conditions and CAR T-cell infiltration into three-dimensional GBM spheroids. Computational modeling identified increased tumor necrosis factor α concentrations with decreased glutamine, lactate and formate as being most predictive of short-term (2 days) and long-term (7 days) CAR T cell potency against GBM stem cells. CONCLUSIONS: These studies establish impedance sensing as a high-throughput, label-free assay for preclinical potency testing of CAR T cells against solid tumors.


Subject(s)
Glioblastoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , CD8-Positive T-Lymphocytes , Antibodies , Cytokines , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell
6.
Exp Neurol ; 357: 114177, 2022 11.
Article in English | MEDLINE | ID: mdl-35868359

ABSTRACT

Ischemic stroke is a leading cause of morbidity and mortality, with limited treatments that can facilitate brain regeneration. Neural progenitor cells (NPCs) hold promise for replacing tissue lost to stroke, and biomaterial approaches may improve their efficacy to overcome hurdles in clinical translation. The immune response and its role in stroke pathogenesis and regeneration may interplay with critical mechanisms of stem cell and biomaterial therapies. Cellular therapy can modulate the immune response to reduce toxic neuroinflammation early after ischemia. However, few studies have attempted to harness the regenerative effects of neuroinflammation to augment recovery. Our previous studies demonstrated that intracerebrally transplanted NPCs encapsulated in a chondroitin sulfate-A hydrogel (CS-A + NPCs) can improve vascular regeneration after stroke. In this paper, we found that CS-A + NPCs affect the microglia/macrophage response to promote a regenerative phenotype following stroke in mice. Following transplantation, PPARγ-expressing microglia/macrophages, and MCP-1 and IL-10 protein levels are enhanced. Secreted immunomodulatory factor expression of other factors was altered compared to NPC transplantation alone. Post-stroke depression-like behavior was reduced following cellular and material transplantation. Furthermore, we showed in cultures that microglia/macrophages encapsulated in CS-A had increased expression of angiogenic and arteriogenic mediators. Neutralization with anti-IL-10 antibody negated these effects in vitro. Cumulatively, this work provides a framework for understanding the mechanisms by which immunomodulatory biomaterials can enhance the regenerative effects of cellular therapy for ischemic stroke and other brain injuries.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Biocompatible Materials , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/therapy , Glycosaminoglycans , Immunity , Immunomodulation , Ischemia , Mice , Stem Cell Transplantation , Stroke/pathology
7.
Mol Ther ; 30(7): 2537-2553, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35570396

ABSTRACT

Bispecific T cell engagers (BiTEs) are bispecific antibodies that redirect T cells to target antigen-expressing tumors. We hypothesized that BiTE-secreting T cells could be a valuable therapy in solid tumors, with distinct properties in mono- or multi-valent strategies incorporating chimeric antigen receptor (CAR) T cells. Glioblastomas represent a good model for solid tumor heterogeneity, representing a significant therapeutic challenge. We detected expression of tumor-associated epidermal growth factor receptor (EGFR), EGFR variant III, and interleukin-13 receptor alpha 2 (IL13Rα2) on glioma tissues and cancer stem cells. These antigens formed the basis of a multivalent approach, using a conformation-specific tumor-related EGFR targeting antibody (806) and Hu08, an IL13Rα2-targeting antibody, as the single chain variable fragments to generate new BiTE molecules. Compared with CAR T cells, BiTE T cells demonstrated prominent activation, cytokine production, and cytotoxicity in response to target-positive gliomas. Superior response activity was also demonstrated in BiTE-secreting bivalent T cells compared with bivalent CAR T cells in a glioma mouse model at early phase, but not in the long term. In summary, BiTEs secreted by mono- or multi-valent T cells have potent anti-tumor activity in vitro and in vivo with significant sensitivity and specificity, demonstrating a promising strategy in solid tumor therapy.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Animals , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioblastoma/pathology , Immunotherapy, Adoptive , Mice , T-Lymphocytes , Xenograft Model Antitumor Assays
8.
Lab Chip ; 20(17): 3187-3201, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32844860

ABSTRACT

Isolation of exosomes from biological samples provides a minimally-invasive alternative for basic understanding, diagnosis, and prognosis of metastatic cancers. The biology and clinical values of exosomes are under intensive investigation, yet most studies are limited by technical challenges in recovering these exosomes with heterogeneous sizes and cargos from biological samples. We report a novel method based on "particle ferrohydrodynamics" and its associated microfluidic device, termed as the FerroChip, which can separate exosome-like nanoparticles from microliters of cell culture media and human serum in a label-free, continuous-flow and size-dependent manner, and achieves a high recovery rate (94.3%) and a high purity (87.9%). Separated exosome-like nanoparticles had diameters, morphology, and protein expressions that were consistent with other reports. This method, upon further molecular characterization, could potentially facilitate basic understanding of exosomes and its clinical application in blood liquid biopsy.


Subject(s)
Exosomes , Nanoparticles , Neoplasms , Humans , Lab-On-A-Chip Devices , Liquid Biopsy
9.
Adv Healthc Mater ; 9(5): e1900285, 2020 03.
Article in English | MEDLINE | ID: mdl-31977165

ABSTRACT

Stroke causes significant mortality and morbidity. Currently, there are no treatments which can regenerate brain tissue lost to infarction. Neural progenitor cells (NPCs) are at the forefront of preclinical studies for regenerative stroke therapies. NPCs can differentiate into and replace neurons and promote endogenous recovery mechanisms such as angiogenesis via trophic factor production and release. The stroke core is hypothetically the ideal location for replacement of neural tissue since it is in situ and develops into a potential space where injections may be targeted with minimal compression of healthy peri-infarct tissue. However, the compromised perfusion and tissue degradation following ischemia create an inhospitable environment resistant to cellular therapy. Overcoming these limitations is critical to advancing cellular therapy. In this work, the therapeutic potential of mouse-induced pluripotent stem cell derived NPCs is tested encapsulated in a basic fibroblast growth factor (bFGF) binding chondroitin sulfate-A (CS-A) hydrogel transplanted into the infarct core in a mouse sensorimotor cortex mini-stroke model. It is shown that CS-A encapsulation significantly improves vascular remodeling, cortical blood flow, and sensorimotor behavioral outcomes after stroke. It is found these improvements are negated by blocking bFGF, suggesting that the sustained trophic signaling endowed by the CS-A hydrogel combined with NPC transplantation can promote tissue repair.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Brain , Brain Ischemia/therapy , Glycosaminoglycans , Mice , Regeneration , Stroke/therapy
10.
FASEB J ; 33(11): 11973-11992, 2019 11.
Article in English | MEDLINE | ID: mdl-31398290

ABSTRACT

Invasive spread of glioblastoma (GBM) is linked to changes in chondroitin sulfate (CS) proteoglycan (CSPG)-associated sulfated glycosaminoglycans (GAGs) that are selectively up-regulated in the tumor microenvironment (TME). We hypothesized that inhibiting CS-GAG signaling in the TME would stem GBM invasion. Rat F98 GBM cells demonstrated enhanced preferential cell invasion into oversulfated 3-dimensional composite of CS-A and CS-E [4- and 4,6-sulfated CS-GAG (COMP)] matrices compared with monosulfated (4-sulfated) and unsulfated hyaluronic acid matrices in microfluidics-based choice assays, which is likely influenced by differential GAG receptor binding specificities. Both F98 and human patient-derived glioma stem cells (GSCs) demonstrated a high degree of colocalization of the GSC marker CD133 and CSPGs. The small molecule sulfated GAG antagonist bis-2-methyl-4-amino-quinolyl-6-carbamide (surfen) reduced invasion and focal adhesions in F98 cells encapsulated in COMP matrices and blocked CD133 and antichondroitin sulfate antibody (CS-56) detection of respective antigens in F98 cells and human GSCs. Surfen-treated F98 cells down-regulated CSPG-binding receptor transcripts and protein, as well as total and activated ERK and protein kinase B. Lastly, rats induced with frontal lobe tumors and treated with a single intratumoral dose of surfen demonstrated reduced tumor burden and spread compared with untreated controls. These results present a first demonstration of surfen as an inhibitor of sulfated GAG signaling to stem GBM invasion.-Logun, M. T., Wynens, K. E., Simchick, G., Zhao, W., Mao, L., Zhao, Q., Mukherjee, S., Brat, D. J., Karumbaiah, L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion.


Subject(s)
Cell Movement/drug effects , Chondroitin Sulfates/antagonists & inhibitors , Glioblastoma/metabolism , Neoplastic Stem Cells/drug effects , Tumor Microenvironment/drug effects , Urea/analogs & derivatives , AC133 Antigen/metabolism , Animals , Cell Line, Tumor , Chondroitin Sulfates/metabolism , Glioblastoma/pathology , Glioma/metabolism , Glioma/pathology , Glycosaminoglycans/antagonists & inhibitors , Glycosaminoglycans/metabolism , Humans , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Rats , Signal Transduction/drug effects , Urea/pharmacology
11.
ACS Chem Biol ; 14(9): 1921-1929, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31389687

ABSTRACT

Heparin and heparan sulfate (HS) are attractive components for constructing biomaterials due to their ability to recruit and regulate the activity of growth factors. The structural and functional heterogeneity of naturally derived heparin and HS is, however, an impediment for the preparation of biomaterials for regenerative medicine. To address this problem, we have prepared hydrogels modified by well-defined synthetic HS-derived disaccharides. Human induced pluripotent cell-derived neural stem cells (HIP-NSCs) encapsulated in a polyethylene glycol-based hydrogel modified by a pendent HS disaccharide that is a known ligand for fibroblast growth factor-2 (FGF-2) exhibited a significant increase in proliferation and self-renewal. This observation is important because evidence is emerging that undifferentiated stems cells can yield significant therapeutic benefits via their paracrine signaling mechanisms. Our data indicate that the HS disaccharide protects FGF-2, which has a very short biological half-live, from degradation. It is anticipated that, by careful selection of a synthetic HS oligosaccharide, it will be possible to control retention and release of specific growth factor, which in turn will provide control over cell fate.


Subject(s)
Biomimetic Materials/pharmacology , Cell Differentiation/drug effects , Disaccharides/pharmacology , Hydrogels/pharmacology , Neural Stem Cells/metabolism , Biomimetic Materials/chemical synthesis , Biomimetic Materials/toxicity , Cell Proliferation/drug effects , Disaccharides/chemical synthesis , Disaccharides/toxicity , Fibroblast Growth Factor 2/metabolism , Heparitin Sulfate/chemistry , Humans , Hydrogels/chemical synthesis , Hydrogels/toxicity , Neural Stem Cells/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Proof of Concept Study , Protein Stability/drug effects
12.
J Surg Res ; 239: 269-277, 2019 07.
Article in English | MEDLINE | ID: mdl-30884383

ABSTRACT

BACKGROUND: A novel injectable expanding foam based on hydrophobically modified chitosan (HM-CS) was developed to improve hemostasis during surgeries. HM-CS is an amphiphilic derivative of the natural biopolymer chitosan (CS); HM-CS has been shown to improve the natural hemostatic characteristics of CS, but its internal safety has not been systematically evaluated. The goal of this study was to compare the long-term in vivo safety of HM-CS relative to a commonly used fibrin sealant (FS), TISSEEL (Baxter). METHODS: Sixty-four Sprague-Dawley rats (275-325 g obtained from Charles River Laboratories) were randomly assigned to control (n = 16) or experimental (n = 48) groups. Samples of the test materials (HM-CS [n = 16], CS [n = 16], and FS [n = 16]) applied to a nonlethal liver excision (0.4 ± 0.3 g of the medial lobe) in rats were left inside the abdomen to degrade. Animals were observed daily for signs of morbidity and mortality. Surviving animals were sacrificed at 1 and 6 wk; the explanted injury sites were microscopically assessed. RESULTS: All animals (64/64) survived both the 1- and 6-wk time points without signs of morbidity. Histological examination showed a comparable pattern of degradation for the various test materials. FS remnants and significant adhesions to neighboring tissues were observed at 6 wk. Residual CS and HM-CS were observed at the 6 wk with fatty deposits at the site of injury. Minimal adhesions were observed for CS and HM-CS. CONCLUSIONS: The internal safety observed in the HM-CS test group after abdominal implantation indicates that injectable HM-CS expanding foam may be an appropriate internal use hemostatic candidate.


Subject(s)
Blood Loss, Surgical/prevention & control , Chitosan/administration & dosage , Hemostasis, Surgical/methods , Hemostatics/administration & dosage , Animals , Chitosan/adverse effects , Chitosan/chemistry , Disease Models, Animal , Fibrin Tissue Adhesive/administration & dosage , Hemostatics/adverse effects , Hemostatics/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Liver/surgery , Male , Mice , Rats , Rats, Sprague-Dawley
13.
Stem Cells Transl Med ; 8(6): 575-585, 2019 06.
Article in English | MEDLINE | ID: mdl-30666821

ABSTRACT

Bone morphogenetic protein 2 (BMP-2)-loaded collagen sponges remain the clinical standard for treatment of large bone defects when there is insufficient autograft, despite associated complications. Recent efforts to negate comorbidities have included biomaterials and gene therapy approaches to extend the duration of BMP-2 release and activity. In this study, we compared the collagen sponge clinical standard to chondroitin sulfate glycosaminoglycan (CS-GAG) scaffolds as a delivery vehicle for recombinant human BMP-2 (rhBMP-2) and rhBMP-2 expression via human BMP-2 gene inserted into mesenchymal stem cells (BMP-2 MSC). We demonstrated extended release of rhBMP-2 from CS-GAG scaffolds compared to their collagen sponge counterparts, and further extended release from CS-GAG gels seeded with BMP-2 MSC. When used to treat a challenging critically sized femoral defect model in rats, both rhBMP-2 and BMP-2 MSC in CS-GAG induced comparable bone formation to the rhBMP-2 in collagen sponge, as measured by bone volume, strength, and stiffness. We conclude that CS-GAG scaffolds are a promising delivery vehicle for controlling the release of rhBMP-2 and to mediate the repair of critically sized segmental bone defects. Stem Cells Translational Medicine 2019;8:575-585.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bone Regeneration/drug effects , Chondroitin Sulfates/chemistry , Tissue Scaffolds/chemistry , Transforming Growth Factor beta/pharmacology , Animals , Bone Diseases/pathology , Bone Diseases/therapy , Bone Diseases/veterinary , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/pharmacology , Collagen/chemistry , Female , Humans , Hydrogels/chemistry , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Nanofibers/chemistry , Rats , Rats, Nude , Recombinant Proteins/pharmacology
14.
Adv Biosyst ; 2(5)2018 May.
Article in English | MEDLINE | ID: mdl-29780878

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive form of brain cancer that has no effective treatments and a prognosis of only 12-15 months. Microfluidic technologies deliver microscale control of fluids and cells, and have aided cancer therapy as point-of-care devices for the diagnosis of breast and prostate cancers. However, a few microfluidic devices are developed to study malignant glioma. The ability of these platforms to accurately replicate the complex microenvironmental and extracellular conditions prevailing in the brain and facilitate the measurement of biological phenomena with high resolution and in a high-throughput manner could prove useful for studying glioma progression. These attributes, coupled with their relatively simple fabrication process, make them attractive for use as point-of-care diagnostic devices for detection and treatment of GBM. Here, the current issues that plague GBM research and treatment, as well as the current state of the art in glioma detection and therapy, are reviewed. Finally, opportunities are identified for implementing microfluidic technologies into research and diagnostics to facilitate the rapid detection and better therapeutic targeting of GBM.

15.
Neuropsychopharmacology ; 42(10): 1962-1971, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28425496

ABSTRACT

3,4-Methylenedioxymethamphetamine (MDMA) increases sociality in humans and animals. Release of serotonin (5-HT) is thought to have an important role in the increase in social behaviors, but the mechanisms underlying these effects are poorly understood. Despite the advantages of nonhuman primate models, no studies have examined the mechanisms of the social effects of MDMA in nonhuman primates. The behavior and vocalizations of four group-housed squirrel monkeys were examined following administration of MDMA, its enantiomers, and methamphetamine. 5-HT receptor antagonists and agonists were given as drug pretreatments. Data were analyzed using linear mixed-effects models. MDMA and its enantiomers increased affiliative social behaviors and vocalizations, whereas methamphetamine had only modest effects on affiliative behaviors. Pretreatment with a 5-HT2A receptor antagonist and a 5-HT2C receptor agonist attenuated the MDMA-induced increase in social behaviors, while a 5-HT1A receptor antagonist did not alter affiliative vocalizations and increased MDMA-induced social contact. Nonhuman primates show MDMA-specific increases in affiliative social behaviors following MDMA administration, in concordance with human and rodent studies. MDMA-induced increases in social behaviors are 5-HT2A, but not 5-HT1A, receptor dependent. Understanding the neurochemical mechanisms mediating the prosocial effects of MDMA could help in the development of novel therapeutics with the unique social effects of MDMA but fewer of its limitations.


Subject(s)
N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Psychotropic Drugs/pharmacology , Receptor, Serotonin, 5-HT2A/metabolism , Social Behavior , Animals , Dose-Response Relationship, Drug , Linear Models , Male , Methamphetamine/pharmacology , Receptor, Serotonin, 5-HT1A/metabolism , Saimiri , Serotonin Agents/pharmacology , Vocalization, Animal/drug effects , Vocalization, Animal/physiology
16.
J Mater Chem B ; 4(36): 6052-6064, 2016.
Article in English | MEDLINE | ID: mdl-28217304

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive form of astrocytoma accounting for a majority of primary malignant brain tumors in the United States. Chondroitin sulfate proteoglycans (CSPGs) and their glycosaminoglycan (GAG) side chains are key constituents of the brain extracellular matrix (ECM) implicated in promoting tumor invasion. However, the mechanisms by which sulfated CS-GAGs promote brain tumor invasion are currently unknown. We hypothesize that glioma cell invasion is triggered by the altered sulfation of CS-GAGs in the tumor extracellular environment, and that this is potentially mediated by independent mechanisms involving CXCL12/CXCR4 and LAR signaling respectively. This was tested in vitro by encapsulating the human glioma cell line U87MG-EGFP into monosulfated (4-sulfated; CS-A), composite (4 and 4,6-sulfated; CS-A/E), unsulfated hyaluronic acid (HA), and unsulfated agarose (AG; polysaccharide) hydrogels within microfluidics-based choice assays. Our results demonstrated the enhanced preferential cell invasion into composite hydrogels, when compared to other hydrogel matrices (p<0.05). Haptotaxis assays demonstrated the significantly (p<0.05) faster migration of U87MG-EGFP cells in CXCL12 containing CS-GAG hydrogels when compared to other hydrogel matrices containing the same chemokine concentration. This is likely due to the significantly (p<0.05) greater affinity of composite CS-GAGs to CXCL12 over other hydrogel matrices. Results from qRT-PCR assays further demonstrated the significant (p<0.05) upregulation of the chemokine receptor CXCR4, and the CSPG receptor LAR in glioma cells within CS-GAG hydrogels compared to control hydrogels. Western blot analysis of cell lysates derived from glioma cells encapsulated in different hydrogel matrices further corroborate qRT-PCR results, and indicate the presence of a potential variant of LAR that is selectively expressed only in glioma cells encapsulated in CS-GAG hydrogels. These results suggest that sulfated CS-GAGs may directly induce enhanced invasion and haptotaxis of glioma cells associated with aggressive brain tumors via distinct mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...