Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 365: 121683, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963968

ABSTRACT

Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.

2.
Bioresour Technol ; 364: 128065, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36202283

ABSTRACT

Waste management has become an ever-increasing global issue due to population growth and rapid globalisation. For similar reasons, the greenhouse effect caused by fossil fuel combustion, is leading to chronic climate change issues. A novel approach, the waste-to-hydrogen process, is introduced to address the concern of waste generation and climate change with an additional merit of production of a renewable, higher energy density than fossil fuels and sustainable transportation fuel, hydrogen (H2) gas. In the downstream H2 purifying process, membrane separation is one of the appealing options for the waste-to-hydrogen process given its low energy consumption and low operational cost. However, commercial polymeric membranes have hindered membrane separation process due to their low separation performance. By introducing novel two-dimensional materials as substitutes, the limitation of purifying using conventional membranes can potentially be solved. Herein, this article provides a comprehensive review of two-dimensional materials as alternatives to membrane technology for the gas separation of H2 in waste-to-hydrogen downstream process. Moreover, this review article elaborates and provides some perspectives on the challenges and future potential of the waste-to-hydrogen process and the use of two-dimensional materials in membrane technology.


Subject(s)
Hydrogen , Waste Management , Hydrogen/analysis , Waste Management/methods , Fossil Fuels
3.
ACS Appl Mater Interfaces ; 14(25): 28842-28853, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35709360

ABSTRACT

Breaking the trade-off between filtration performance and antifouling property is critical to enabling a thin-film nanocomposite (TFC) nanofiltration (NF) membrane for a wide range of feed streams. We proposed a novel design route for TFC NF membranes by grafting well-defined zwitterionic copolymers of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and 2-aminoethyl methacrylate hydrochloride (AEMA) on the polyamide surfaces via an in situ surface chemical modification process. The successful grafting of a zwitterionic copolymer imparted the modified NF membranes with better surface hydrophilicity, a larger actual surface area (i.e., nodular structures), and a thinner polyamide layer. As a result, the water permeability of the modified membrane (i.e., TFC-10) was triple that of the pristine TFC membrane while maintaining high Na2SO4 rejection. We further demonstrated that the TFC-10 membrane possessed exceptional antifouling properties in both static adsorption tests and three cycles of dynamic protein and humic acid fouling tests. To recap, this work provides valuable insights and strategies for the fabrication of TFC NF membranes with simultaneously enhanced filtration performance and antifouling property.

SELECTION OF CITATIONS
SEARCH DETAIL
...