Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Hum Brain Mapp ; 45(10): e26759, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38989632

ABSTRACT

The inferior frontal sulcus (ifs) is a prominent sulcus on the lateral frontal cortex, separating the middle frontal gyrus from the inferior frontal gyrus. The morphology of the ifs can be difficult to distinguish from adjacent sulci, which are often misidentified as continuations of the ifs. The morphological variability of the ifs and its relationship to surrounding sulci were examined in 40 healthy human subjects (i.e., 80 hemispheres). The sulci were identified and labeled on the native cortical surface meshes of individual subjects, permitting proper intra-sulcal assessment. Two main morphological patterns of the ifs were identified across hemispheres: in Type I, the ifs was a single continuous sulcus, and in Type II, the ifs was discontinuous and appeared in two segments. The morphology of the ifs could be further subdivided into nine subtypes based on the presence of anterior and posterior sulcal extensions. The ifs was often observed to connect, either superficially or completely, with surrounding sulci, and seldom appeared as an independent sulcus. The spatial variability of the ifs and its various morphological configurations were quantified in the form of surface spatial probability maps which are made publicly available in the standard fsaverage space. These maps demonstrated that the ifs generally occupied a consistent position across hemispheres and across individuals. The normalized mean sulcal depths associated with the main morphological types were also computed. The present study provides the first detailed description of the ifs as a sulcal complex composed of segments and extensions that can be clearly differentiated from adjacent sulci. These descriptions, together with the spatial probability maps, are critical for the accurate identification of the ifs in anatomical and functional neuroimaging studies investigating the structural characteristics and functional organization of this region in the human brain.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Male , Female , Adult , Brain Mapping/methods , Frontal Lobe/anatomy & histology , Frontal Lobe/diagnostic imaging , Young Adult , Image Processing, Computer-Assisted/methods , Probability
2.
Neuroimage ; 279: 120336, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37597590

ABSTRACT

Group level analyses of functional regions involved in voice perception show evidence of 3 sets of bilateral voice-sensitive activations in the human prefrontal cortex, named the anterior, middle and posterior Frontal Voice Areas (FVAs). However, the relationship with the underlying sulcal anatomy, highly variable in this region, is still unknown. We examined the inter-individual variability of the FVAs in conjunction with the sulcal anatomy. To do so, anatomical and functional MRI scans from 74 subjects were analyzed to generate individual contrast maps of the FVAs and relate them to each subject's manually labeled prefrontal sulci. We report two major results. First, the frontal activations for the voice are significantly associated with the sulcal anatomy. Second, this correspondence with the sulcal anatomy at the individual level is a better predictor than coordinates in the MNI space. These findings offer new perspectives for the understanding of anatomical-functional correspondences in this complex cortical region. They also shed light on the importance of considering individual-specific variations in subject's anatomy.


Subject(s)
Neocortex , Voice , Humans , Prefrontal Cortex/diagnostic imaging
4.
Front Neuroinform ; 16: 803934, 2022.
Article in English | MEDLINE | ID: mdl-35311005

ABSTRACT

Brain mapping studies often need to identify brain structures or functional circuits into a set of individual brains. To this end, multiple atlases have been published to represent such structures based on different modalities, subject sets, and techniques. The mainstream approach to exploit these atlases consists in spatially deforming each individual data onto a given atlas using dense deformation fields, which supposes the existence of a continuous mapping between atlases and individuals. However, this continuity is not always verified, and this "iconic" approach has limits. We present in this study an alternative, complementary, "structural" approach, which consists in extracting structures from the individual data, and comparing them without deformation. A "structural atlas" is thus a collection of annotated individual data with a common structure nomenclature. It may be used to characterize structure shape variability across individuals or species, or to train machine learning systems. This study exhibits Anatomist, a powerful structural 3D visualization software dedicated to building, exploring, and editing structural atlases involving a large number of subjects. It has been developed primarily to decipher the cortical folding variability; cortical sulci vary enormously in both size and shape, and some may be missing or have various topologies, which makes iconic approaches inefficient to study them. We, therefore, had to build structural atlases for cortical sulci, and use them to train sulci identification algorithms. Anatomist can display multiple subject data in multiple views, supports all kinds of neuroimaging data, including compound structural object graphs, handles arbitrary coordinate transformation chains between data, and has multiple display features. It is designed as a programming library in both C++ and Python languages, and may be extended or used to build dedicated custom applications. Its generic design makes all the display and structural aspects used to explore the variability of the cortical folding pattern work in other applications, for instance, to browse axonal fiber bundles, deep nuclei, functional activations, or other kinds of cortical parcellations. Multimodal, multi-individual, or inter-species display is supported, and adaptations to large scale screen walls have been developed. These very original features make it a unique viewer for structural atlas browsing.

5.
Neurosci Biobehav Rev ; 134: 104490, 2022 03.
Article in English | MEDLINE | ID: mdl-34914937

ABSTRACT

The Arcuate Fasciculus (AF) is of considerable interdisciplinary interest, because of its major implication in language processing. Theories about language brain evolution are based on anatomical differences in the AF across primates. However, changing methodologies and nomenclatures have resulted in conflicting findings regarding interspecies AF differences: Historical knowledge about the AF originated from human blunt dissections and later from monkey tract-tracing studies. Contemporary tractography studies reinvestigate the fasciculus' morphology, but remain heavily bound to unclear anatomical priors and methodological limitations. First, we aim to disentangle the influences of these three epistemological steps on existing AF conceptions, and to propose a contemporary model to guide future work. Second, considering the influence of various AF conceptions, we discuss four key evolutionary changes that propagated current views about language evolution: 1) frontal terminations, 2) temporal terminations, 3) greater Dorsal- versus Ventral Pathway expansion, 4) lateralisation. We conclude that new data point towards a more shared AF anatomy across primates than previously described. Language evolution theories should incorporate this more continuous AF evolution across primates.


Subject(s)
Language , White Matter , Animals , Brain Mapping/methods , Nerve Net , Neural Pathways/anatomy & histology
6.
Neuroimage ; 228: 117685, 2021 03.
Article in English | MEDLINE | ID: mdl-33359344

ABSTRACT

Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.


Subject(s)
Anatomy, Comparative/trends , Biological Evolution , Brain/anatomy & histology , Brain/physiology , Neuroimaging/trends , Anatomy, Comparative/methods , Animals , Humans , Neuroimaging/methods , Primates
7.
Neuroimage ; 226: 117519, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33227425

ABSTRACT

Neuroimaging non-human primates (NHPs) is a growing, yet highly specialized field of neuroscience. Resources that were primarily developed for human neuroimaging often need to be significantly adapted for use with NHPs or other animals, which has led to an abundance of custom, in-house solutions. In recent years, the global NHP neuroimaging community has made significant efforts to transform the field towards more open and collaborative practices. Here we present the PRIMatE Resource Exchange (PRIME-RE), a new collaborative online platform for NHP neuroimaging. PRIME-RE is a dynamic community-driven hub for the exchange of practical knowledge, specialized analytical tools, and open data repositories, specifically related to NHP neuroimaging. PRIME-RE caters to both researchers and developers who are either new to the field, looking to stay abreast of the latest developments, or seeking to collaboratively advance the field .


Subject(s)
Access to Information , Neuroimaging/methods , Online Systems , Primates/anatomy & histology , Primates/physiology , Animals
8.
Proc Natl Acad Sci U S A ; 117(9): 4994-5005, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32060124

ABSTRACT

In the primate brain, a set of areas in the ventrolateral frontal (VLF) cortex and the dorsomedial frontal (DMF) cortex appear to control vocalizations. The basic role of this network in the human brain and how it may have evolved to enable complex speech remain unknown. In the present functional neuroimaging study of the human brain, a multidomain protocol was utilized to investigate the roles of the various areas that comprise the VLF-DMF network in learning rule-based cognitive selections between different types of motor actions: manual, orofacial, nonspeech vocal, and speech vocal actions. Ventrolateral area 44 (a key component of the Broca's language production region in the human brain) is involved in the cognitive selection of orofacial, as well as, speech and nonspeech vocal responses; and the midcingulate cortex is involved in the analysis of speech and nonspeech vocal feedback driving adaptation of these responses. By contrast, the cognitive selection of speech vocal information requires this former network and the additional recruitment of area 45 and the presupplementary motor area. We propose that the basic function expressed by the VLF-DMF network is to exert cognitive control of orofacial and vocal acts and, in the language dominant hemisphere of the human brain, has been adapted to serve higher speech function. These results pave the way to understand the potential changes that could have occurred in this network across primate evolution to enable speech production.


Subject(s)
Cognition/physiology , Frontal Lobe/physiology , Motor Cortex/physiology , Vocal Cords/physiology , Voice/physiology , Adult , Animals , Biological Evolution , Brain , Brain Mapping , Broca Area , Female , Humans , Language , Learning , Male , Nerve Net , Primates , Speech/physiology , Vocalization, Animal/physiology , Young Adult
9.
Front Neurosci ; 11: 753, 2017.
Article in English | MEDLINE | ID: mdl-29375293

ABSTRACT

According to contemporary views, the lateral frontal cortex is organized along a rostro-caudal functional axis with increasingly complex cognitive/behavioral control implemented rostrally, and increasingly detailed motor control implemented caudally. Whether the medial frontal cortex follows the same organization remains to be elucidated. To address this issue, the functional connectivity of the 3 cingulate motor areas (CMAs) in the human brain with the lateral frontal cortex was investigated. First, the CMAs and their representations of hand, tongue, and eye movements were mapped via task-related functional magnetic resonance imaging (fMRI). Second, using resting-state fMRI, their functional connectivity with lateral prefrontal and lateral motor cortical regions of interest (ROIs) were examined. Importantly, the above analyses were conducted at the single-subject level to account for variability in individual cingulate morphology. The results demonstrated a rostro-caudal functional organization of the CMAs in the human brain that parallels that in the lateral frontal cortex: the rostral CMA has stronger functional connectivity with prefrontal regions and weaker connectivity with motor regions; conversely, the more caudal CMAs have weaker prefrontal and stronger motor connectivity. Connectivity patterns of the hand, tongue and eye representations within the CMAs are consistent with that of their parent CMAs. The parallel rostral-to-caudal functional organization observed in the medial and lateral frontal cortex could likely contribute to different hierarchies of cognitive-motor control.

10.
Neurosci Biobehav Rev ; 82: 32-44, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27923733

ABSTRACT

This review centers on the neural mechanisms underlying the primate cognitive control of vocalizations, i.e. the capacity to regulate vocal productions in a goal-directed manner. In both human and non-human primates (NHPs), two main frontal brain regions are associated with top-down vocal control: a ventrolateral frontal region (VLF), comprising the ventrolateral prefrontal cortex and ventral premotor region; and a dorsomedial frontal region (DMF), comprising the mid-cingulate cortex, pre-supplementary and supplementary motor areas. These regions are cytoarchitectonically comparable across humans and NHPs and could serve generic functions in primate vocal control. Here, we first summarize the key anatomical properties of VLF and DMF regions as well as their involvements in the motor and cognitive control of vocalizations in both humans and NHPs. Finally, in light of the reviewed evidence, we discuss the existence of a primate VLF-DMF network and its generic functions in the cognitive control of vocalizations. We further suggest how this network and its functions may have changed across primate evolution to enable modern human speech.


Subject(s)
Executive Function/physiology , Nerve Net/physiology , Prefrontal Cortex/physiology , Primates/physiology , Vocalization, Animal/physiology , Animals
11.
Neuroscientist ; 22(5): 506-20, 2016 10.
Article in English | MEDLINE | ID: mdl-26170005

ABSTRACT

Throughout our evolutionary history, our cognitive systems have been altered by the advent of technological inventions such as primitive tools, spoken language, writing, and arithmetic systems. Thirty years ago, the Internet surfaced as the latest technological invention poised to deeply reshape human cognition. With its multifaceted affordances, the Internet environment has profoundly transformed our thoughts and behaviors. Growing up with Internet technologies, "Digital Natives" gravitate toward "shallow" information processing behaviors characterized by rapid attention shifting and reduced deliberations. They engage in increased multitasking behaviors that are linked to increased distractibility and poor executive control abilities. Digital natives also exhibit higher prevalence of Internet-related addictive behaviors that reflect altered reward-processing and self-control mechanisms. Recent neuroimaging investigations have suggested associations between these Internet-related cognitive impacts and structural changes in the brain. Against mounting apprehension over the Internet's consequences on our cognitive systems, several researchers have lamented that these concerns were often exaggerated beyond existing scientific evidence. In the present review, we aim to provide an objective overview of the Internet's impacts on our cognitive systems. We critically discuss current empirical evidence about how the Internet environment has altered the cognitive behaviors and structures involved in information processing, executive control, and reward-processing.


Subject(s)
Behavior, Addictive/physiopathology , Brain/physiopathology , Cognition/physiology , Executive Function/physiology , Internet , Humans , Reward
12.
PLoS One ; 9(9): e106698, 2014.
Article in English | MEDLINE | ID: mdl-25250778

ABSTRACT

Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today's society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences.


Subject(s)
Gray Matter/physiology , Gyrus Cinguli/physiology , Multimedia , Psychomotor Performance/physiology , Adult , Brain/anatomy & histology , Brain/physiology , Gray Matter/anatomy & histology , Gyrus Cinguli/anatomy & histology , Humans , Magnetic Resonance Imaging/methods , Male , Regression Analysis , Young Adult
13.
Sleep ; 37(7): 1171-8, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-25061245

ABSTRACT

STUDY OBJECTIVES: To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. DESIGN: Community-based longitudinal brain and cognitive aging study using a convenience sample. SETTING: Participants were studied in a research laboratory. PARTICIPANTS: Relatively healthy adults aged 55 y and older at study commencement. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. CONCLUSIONS: In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. CITATION: Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.


Subject(s)
Aging/physiology , Brain/anatomy & histology , Brain/physiology , Cognition Disorders/physiopathology , Cognition/physiology , Sleep/physiology , Aged , Atrophy/physiopathology , Body Mass Index , C-Reactive Protein/analysis , Cognition Disorders/etiology , Female , Healthy Volunteers , Humans , Longitudinal Studies , Male , Middle Aged , Neuropsychological Tests , Sleep Wake Disorders/physiopathology , Time Factors
14.
Front Neurol ; 5: 81, 2014.
Article in English | MEDLINE | ID: mdl-24904524

ABSTRACT

Human sleep schedules vary widely across countries. We investigated whether these variations were related to differences in social factors, Morningness-Eveningness (ME) preference, or the natural light-dark cycle by contrasting the sleep duration and timing of young adults (age: 18-35 years) on work and free days in Singapore (n = 1898) and the UK (n = 837). On work days, people in Singapore had later bedtimes, but wake times were similar to the UK sample, resulting in shorter sleep duration. In contrast, sleep duration on free days did not differ between the two countries. Shorter sleep on work days, without compensatory extra long sleep hours on free days, suggest greater demands from work and study in Singapore. While the two samples differed slightly in ME preference, the associations between eveningness preference and greater extension in sleep duration as well as delays in sleep timing on free days were similar in the two countries. Thus, differences in ME preference did not account for the differences in sleep schedules between the two countries. The greater variability in the photoperiod in the UK was not associated with more prominent seasonal changes in sleep patterns compared to Singapore. Furthermore, in the UK, daylight saving time did not alter sleep schedules relative to clock time. Collectively, these findings suggest that differences in social demands, primarily from work or study, could account for the observed differences in sleep schedules between countries, and that in industrialized societies, social zeitgebers, which typically involve exposure to artificial light, are major determinants of sleep schedules.

SELECTION OF CITATIONS
SEARCH DETAIL
...