Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 899, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321013

ABSTRACT

Antigen-specific regulatory T cells (Tregs) suppress pathogenic autoreactivity and are potential therapeutic candidates for autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis is associated with autoreactivity to the Smith (Sm) autoantigen and the human leucocyte antigen (HLA)-DR15 haplotype; hence, we investigated the potential of Sm-specific Tregs (Sm-Tregs) to suppress disease. Here we identify a HLA-DR15 restricted immunodominant Sm T cell epitope using biophysical affinity binding assays, then identify high-affinity Sm-specific T cell receptors (TCRs) using high-throughput single-cell sequencing. Using lentiviral vectors, we transduce our lead Sm-specific TCR into Tregs derived from patients with SLE who are anti-Sm and HLA-DR15 positive. Compared with polyclonal mock-transduced Tregs, Sm-Tregs potently suppress Sm-specific pro-inflammatory responses in vitro and suppress disease progression in a humanized mouse model of lupus nephritis. These results show that Sm-Tregs are a promising therapy for SLE.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Mice , Animals , Humans , T-Lymphocytes, Regulatory , Autoantigens/metabolism
2.
Sci Immunol ; 6(58)2021 04 16.
Article in English | MEDLINE | ID: mdl-33863750

ABSTRACT

Individuals expressing HLA-DR4 bearing the shared susceptibility epitope (SE) have an increased risk of developing rheumatoid arthritis (RA). Posttranslational modification of self-proteins via citrullination leads to the formation of neoantigens that can be presented by HLA-DR4 SE allomorphs. However, in T cell-mediated autoimmunity, the interplay between the HLA molecule, posttranslationally modified epitope(s), and the responding T cell repertoire remains unclear. In HLA-DR4 transgenic mice, we show that immunization with a Fibß-74cit69-81 peptide led to a population of HLA-DR4Fibß-74cit69-81 tetramer+ T cells that exhibited biased T cell receptor (TCR) ß chain usage, which was attributable to selective clonal expansion from the preimmune repertoire. Crystal structures of pre- and postimmune TCRs showed that the SE of HLA-DR4 represented a main TCR contact zone. Immunization with a double citrullinated epitope (Fibß-72,74cit69-81) altered the responding HLA-DR4 tetramer+ T cell repertoire, which was due to the P2-citrulline residue interacting with the TCR itself. We show that the SE of HLA-DR4 has dual functionality, namely, presentation and a direct TCR recognition determinant. Analogous biased TCR ß chain usage toward the Fibß-74cit69-81 peptide was observed in healthy HLA-DR4+ individuals and patients with HLA-DR4+ RA, thereby suggesting a link to human RA.


Subject(s)
Arthritis, Rheumatoid/immunology , Epitopes, T-Lymphocyte/metabolism , HLA-DR4 Antigen/metabolism , T-Lymphocytes/immunology , Adult , Aged, 80 and over , Alleles , Animals , Arthritis, Rheumatoid/blood , Autoantigens/immunology , Autoantigens/metabolism , Citrullination/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , HLA-DR4 Antigen/genetics , HLA-DR4 Antigen/immunology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , HLA-DRB1 Chains/metabolism , Humans , Male , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism
3.
J Exp Med ; 218(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33107914

ABSTRACT

NF-κB2/p100 (p100) is an inhibitor of κB (IκB) protein that is partially degraded to produce the NF-κB2/p52 (p52) transcription factor. Heterozygous NFKB2 mutations cause a human syndrome of immunodeficiency and autoimmunity, but whether autoimmunity arises from insufficiency of p52 or IκB function of mutated p100 is unclear. Here, we studied mice bearing mutations in the p100 degron, a domain that harbors most of the clinically recognized mutations and is required for signal-dependent p100 degradation. Distinct mutations caused graded increases in p100-degradation resistance. Severe p100-degradation resistance, due to inheritance of one highly degradation-resistant allele or two subclinical alleles, caused thymic medullary hypoplasia and autoimmune disease, whereas the absence of p100 and p52 did not. We inferred a similar mechanism occurs in humans, as the T cell receptor repertoires of affected humans and mice contained a hydrophobic signature of increased self-reactivity. Autoimmunity in autosomal dominant NFKB2 syndrome arises largely from defects in nonhematopoietic cells caused by the IκB function of degradation-resistant p100.


Subject(s)
Autoimmunity/genetics , NF-kappa B p52 Subunit/genetics , Animals , Female , Humans , I-kappa B Proteins/genetics , Male , Mice , Mice, Inbred BALB C , NF-kappa B/genetics , Receptors, Antigen, T-Cell/genetics
4.
Nat Commun ; 10(1): 3392, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358739

ABSTRACT

Autoreactivity to myeloperoxidase (MPO) causes anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), with rapidly progressive glomerulonephritis. Here, we show that a Staphylococcus aureus peptide, homologous to an immunodominant MPO T-cell epitope (MPO409-428), can induce anti-MPO autoimmunity. The peptide (6PGD391-410) is part of a plasmid-encoded 6-phosphogluconate dehydrogenase found in some S. aureus strains. It induces anti-MPO T-cell autoimmunity and MPO-ANCA in mice, whereas related sequences do not. Mice immunized with 6PGD391-410, or with S. aureus containing a plasmid expressing 6PGD391-410, develop glomerulonephritis when MPO is deposited in glomeruli. The peptide induces anti-MPO autoreactivity in the context of three MHC class II allomorphs. Furthermore, we show that 6PGD391-410 is immunogenic in humans, as healthy human and AAV patient sera contain anti-6PGD and anti-6PGD391-410 antibodies. Therefore, our results support the idea that bacterial plasmids might have a function in autoimmune disease.


Subject(s)
Autoimmunity/immunology , Bacterial Proteins/immunology , Heymann Nephritis Antigenic Complex/immunology , Peptides/immunology , Peroxidase/immunology , Staphylococcus aureus/immunology , Amino Acid Sequence , Animals , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/blood , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Bacterial Proteins/genetics , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Glomerulonephritis/immunology , Heymann Nephritis Antigenic Complex/metabolism , Humans , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Peptides/genetics , Peroxidase/metabolism , Plasmids/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/physiology
5.
Front Immunol ; 9: 8, 2018.
Article in English | MEDLINE | ID: mdl-29403492

ABSTRACT

With the advent of novel strategies to induce tolerance in autoimmune and autoimmune-like conditions, clinical trials of antigen-specific tolerizing immunotherapy have become a reality. Besides safety, it will be essential to gather mechanistic data on responding CD4+ T cells to assess the effects of various immunomodulatory approaches in early-phase trials. Peptide-MHC class II (pMHCII) multimers are an ideal tool for monitoring antigen-specific CD4+ T cell responses in unmanipulated cells directly ex vivo. Various protocols have been published but there are reagent and assay limitations across laboratories that could hinder their global application to immune monitoring. In this methodological analysis, we compare protocols and test available reagents to identify sources of variability and to determine the limitations of the tetramer binding assay. We describe a robust pMHCII flow cytometry-based assay to quantify and phenotype antigen-specific CD4+ T cells directly ex vivo from frozen peripheral blood mononuclear cell samples, which we suggest should be tested across various laboratories to standardize immune-monitoring results.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Flow Cytometry/methods , Histocompatibility Antigens Class II/immunology , Monitoring, Immunologic/methods , Peptides/immunology , Antibodies, Monoclonal/immunology , Autoimmune Diseases/immunology , Humans , Immune Tolerance/immunology , Immunosuppression Therapy
6.
J Biol Chem ; 293(9): 3236-3251, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29317506

ABSTRACT

The HLA-DRB1 locus is strongly associated with rheumatoid arthritis (RA) susceptibility, whereupon citrullinated self-peptides bind to HLA-DR molecules bearing the shared epitope (SE) amino acid motif. However, the differing propensity for citrullinated/non-citrullinated self-peptides to bind given HLA-DR allomorphs remains unclear. Here, we used a fluorescence polarization assay to determine a hierarchy of binding affinities of 34 self-peptides implicated in RA against three HLA-DRB1 allomorphs (HLA-DRB1*04:01/*04:04/*04:05) each possessing the SE motif. For all three HLA-DRB1 allomorphs, we observed a strong correlation between binding affinity and citrullination at P4 of the bound peptide ligand. A differing hierarchy of peptide-binding affinities across the three HLA-DRB1 allomorphs was attributable to the ß-chain polymorphisms that resided outside the SE motif and were consistent with sequences of naturally presented peptide ligands. Structural determination of eight HLA-DR4-self-epitope complexes revealed strict conformational convergence of the P4-Cit and surrounding HLA ß-chain residues. Polymorphic residues that form part of the P1 and P9 pockets of the HLA-DR molecules provided a structural basis for the preferential binding of the citrullinated self-peptides to the HLA-DR4 allomorphs. Collectively, we provide a molecular basis for the interplay between citrullination of self-antigens and HLA polymorphisms that shape peptide-HLA-DR4 binding affinities in RA.


Subject(s)
Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Citrullination , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/metabolism , Peptides/metabolism , Polymorphism, Genetic , Amino Acid Sequence , Arthritis, Rheumatoid/immunology , Autoantigens/chemistry , Autoantigens/metabolism , Citrulline/metabolism , HLA-DRB1 Chains/chemistry , Humans , Models, Molecular , Peptides/chemistry , Protein Binding , Protein Conformation, beta-Strand , Substrate Specificity
7.
Nature ; 545(7653): 243-247, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28467828

ABSTRACT

Susceptibility and protection against human autoimmune diseases, including type I diabetes, multiple sclerosis, and Goodpasture disease, is associated with particular human leukocyte antigen (HLA) alleles. However, the mechanisms underpinning such HLA-mediated effects on self-tolerance remain unclear. Here we investigate the molecular mechanism of Goodpasture disease, an HLA-linked autoimmune renal disorder characterized by an immunodominant CD4+ T-cell self-epitope derived from the α3 chain of type IV collagen (α3135-145). While HLA-DR15 confers a markedly increased disease risk, the protective HLA-DR1 allele is dominantly protective in trans with HLA-DR15 (ref. 2). We show that autoreactive α3135-145-specific T cells expand in patients with Goodpasture disease and, in α3135-145-immunized HLA-DR15 transgenic mice, α3135-145-specific T cells infiltrate the kidney and mice develop Goodpasture disease. HLA-DR15 and HLA-DR1 exhibit distinct peptide repertoires and binding preferences and present the α3135-145 epitope in different binding registers. HLA-DR15-α3135-145 tetramer+ T cells in HLA-DR15 transgenic mice exhibit a conventional T-cell phenotype (Tconv) that secretes pro-inflammatory cytokines. In contrast, HLA-DR1-α3135-145 tetramer+ T cells in HLA-DR1 and HLA-DR15/DR1 transgenic mice are predominantly CD4+Foxp3+ regulatory T cells (Treg cells) expressing tolerogenic cytokines. HLA-DR1-induced Treg cells confer resistance to disease in HLA-DR15/DR1 transgenic mice. HLA-DR15+ and HLA-DR1+ healthy human donors display altered α3135-145-specific T-cell antigen receptor usage, HLA-DR15-α3135-145 tetramer+ Foxp3- Tconv and HLA-DR1-α3135-145 tetramer+ Foxp3+CD25hiCD127lo Treg dominant phenotypes. Moreover, patients with Goodpasture disease display a clonally expanded α3135-145-specific CD4+ T-cell repertoire. Accordingly, we provide a mechanistic basis for the dominantly protective effect of HLA in autoimmune disease, whereby HLA polymorphism shapes the relative abundance of self-epitope specific Treg cells that leads to protection or causation of autoimmunity.


Subject(s)
Anti-Glomerular Basement Membrane Disease/immunology , Autoimmunity/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Anti-Glomerular Basement Membrane Disease/pathology , Base Sequence , CD4-Positive T-Lymphocytes/immunology , Collagen Type IV/chemistry , Collagen Type IV/immunology , Cytokines/immunology , Female , Forkhead Transcription Factors/metabolism , HLA-DR Serological Subtypes/immunology , HLA-DR1 Antigen/immunology , Humans , Immunodominant Epitopes , Male , Mice , Mice, Transgenic , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...