Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 130(2): 187-194, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32334990

ABSTRACT

Carotenoids serve as one of the most important group of naturally-occurring lipid-soluble pigments which exhibit great biological activities such as antioxidant, anti-inflammatory and provitamin A activities. Owing to their advantageous health effects, carotenoids are widely applied in various industries. Microbial carotenoids synthesis therefore has attracted increasing attention in recent years. In the present study, a marine microorganism originally isolated from seawater in northern Taiwan was determined to be a strain of Gordonia terrae based on its 16S rRNA gene sequence. The strain G. terrae TWRH01 has the ability to synthesize and accumulate the intracellular pigments was identified by gas chromatography-mass spectrometry (GC-MS). The biochemical production characteristics of this strain were studied by employing different fermentation strategies. Findings suggested that G. terrae TWRH01 can actively grow and efficiently synthesize carotenoids in medium adjusted to pH 7 containing 16 g L-1 sucrose as the carbon source, 16 g L-1 yeast extract as the nitrogen source, 0.6 M NaCl concentration, and supplemented with 0.45% (v/v) 1 M CaCl2. Results revealed that the optimization of fermentation yielded 15.29 g L-1 dry biomass and 10.58 µmol L-1 relative ß-carotene concentration. According to GC-MS analysis, the orange-red colored pigments produced were identified as carotenoid derivatives, mainly echinenone and adonixanthin 3'-ß-d-glucoside. Therefore, the new bacterial strain showed a highly potential bioresource for the commercial production of natural carotenoids.


Subject(s)
Actinobacteria/metabolism , Carotenoids/metabolism , Fermentation , Industrial Microbiology , Actinobacteria/genetics , Biomass , Nitrogen/metabolism , RNA, Ribosomal, 16S/genetics , Taiwan
2.
J Biosci Bioeng ; 125(5): 585-589, 2018 May.
Article in English | MEDLINE | ID: mdl-29339003

ABSTRACT

Xylanase enzyme degrades linear polysaccharide ß-1,4 xylan and the hemicellulose of the plant cell wall. There is a growing demand in finding a cost-effective alternative for industrial scale production of xylanase with high purity for pharmaceutical applications. In this study, an alcohol/salt aqueous biphasic system (ABS) was adopted to recover xylanase from the Bacillus subtilis fermentation broth. The effects of several ABS parameters such as types and concentrations of alcohols and salts (i.e., sulphate, phosphate, and citrate), amount of crude loading and pH of the system on the recovery of xylanase were investigated. Partition coefficient of xylanase (KE), selectivity (S) and yield (YT) of xylanase in top phase of the ABS were measured. Highest KE (6.58 ± 0.05) and selectivity (4.84 ± 0.33) were recorded in an ABS of pH 8 composed of 26% (w/w) 1-propanol, 18% (w/w) ammonium sulphate. High YT of 71.88% ± 0.15 and a purification fold (PFT) of 5.74 ± 0.33 were recorded with this optimum recovery of xylanase using alcohol/salt ABS. The purity of xylanase recovered was then qualitatively verified with sodium dodecyl sulphate (SDS) gel electrophoresis. The SDS profile revealed the purified xylanase was successfully obtained in the top phase of the one-step 1-propanol/sulphate ABS with a distinct single band.


Subject(s)
Bacillus subtilis/enzymology , Culture Media/chemistry , Endo-1,4-beta Xylanases/isolation & purification , Fermentation , Bacillus subtilis/metabolism , Batch Cell Culture Techniques/methods , Bioreactors/microbiology , Endo-1,4-beta Xylanases/metabolism , Ethanol/chemistry , Hydrogen-Ion Concentration , Sodium Chloride/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...