Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Anim Nutr ; 69(3): 159-76, 2015.
Article in English | MEDLINE | ID: mdl-25963930

ABSTRACT

The aim of the present experiment was to compare silage prepared from maize having a brown midrib (BMR) mutation with control (CTR) maize to identify their effects on enteric methane emission, digesta mean retention time (MRT), ruminal fermentation and digestibility. In addition, the utility of archaeol present in faecal samples was validated as a proxy for methane production. Seven German Holstein heifers were fed total mixed rations with a maize-silage proportion (either BMR or CTR) of 920 g/kg dry matter (DM) in a change-over design. Heifers were fed boluses with markers to measure MRT; faeces were collected for 7 days and rumen fluid was collected on the penultimate day. Methane emission was measured in respiration chambers on one day. Data were analysed by t-test and regression analysis. DM intake did not differ between the two diets. The apparent digestibility of DM and most nutrients was unaffected by diet type, but apparent digestibility of neutral and acid detergent-fibre was higher in those heifers fed BMR than in those fed CTR. Comparisons between diets revealed no difference in particle or solute MRT in the gastro-intestinal tract and the reticulorumen. Concentrations of short-chain fatty acid and ammonia in rumen fluid and its pH were not affected by silage type. Independent of the mode of expression [l/d, l/kg DM intake, l/kg digested organic matter], methane emissions were not affected by maize-silage type, but with BMR, there was a trend towards lower methane production per unit of digested neutral detergent fibre than there was with CTR silage. Results of the present study show that feeding heifers BMR silage does not increase methane emissions despite a higher fibre digestibility as compared to CTR silage. Therefore, it is assumed that improvements in animal productivity achieved by feeding BMR silage, as some studies have reported, can be obtained without extra environmental cost per unit of milk or meat. Neither faecal archaeol content [µg/g] nor daily amount excreted [mg/d] is suitable to predict methane production in absolute terms [l per day]. However, faecal archaeol content has a certain potential for predicting the methane yield [l per kg DM intake] of individual animals.


Subject(s)
Cattle/physiology , Glyceryl Ethers/analysis , Methane/biosynthesis , Rumen/metabolism , Zea mays/classification , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Digestion , Feces/chemistry , Female , Silage/analysis
2.
Arch Anim Nutr ; 67(3): 202-18, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23742643

ABSTRACT

The objective of this study was to investigate the effects of niacin and dietary concentrate proportion on body temperature, ruminal pH and milk production of dairy cows. In a 2 × 2 factorial design, 20 primiparous Holstein cows (179 ± 12 days in milk) were assigned to four dietary treatments aimed to receive either 0 or 24 g niacin and 30% (low) or 60% (high) concentrate with the rest being a partial mixed ration (PMR) composed of 60% corn and 40% grass silage (on dry matter basis). Ambient temperature and relative humidity were determined and combined by the calculation of temperature humidity index. Respiration rates, rectal, skin and subcutaneous temperatures were measured. Milk production and composition were determined. Ruminal pH and temperature were recorded at a frequency of 5 min using wireless devices for continuous intra-ruminal measurement (boluses). pH values were corrected for pH sensor drift. The climatic conditions varied considerably but temporarily indicated mild heat stress. Niacin did not affect skin, rectal and subcutaneous temperatures but tended to increase respiration rates. High concentrate reduced skin temperatures at rump, thigh and neck by 0.1-0.3°C. Due to the technical disturbances, not all bolus data could be subjected to statistical evaluation. However, both niacin and high concentrate influenced mean ruminal pH. High concentrate increased the time spent with a pH below 5.6 and ruminal temperatures (0.2-0.3°C). Niacin and high concentrate enhanced milk, protein and lactose yield but reduced milk fat and protein content. Milk fat yield was slightly reduced by high concentrate but increased due to niacin supplementation. In conclusion, niacin did not affect body temperature but stimulated milk performance. High concentrate partially influenced body temperatures and had beneficial effects on milk production.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Diet/veterinary , Dietary Supplements , Lactation/drug effects , Niacin/pharmacology , Animals , Body Temperature , Female , Hydrogen-Ion Concentration , Lactation/physiology , Milk , Niacin/administration & dosage , Parity , Pregnancy , Rumen/physiology
3.
Arch Anim Nutr ; 66(4): 335-46, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22924178

ABSTRACT

Information about the effects of rising atmospheric CO2 concentration and drought on the feed value of maize silage and interactions with the thermal environment during feeding is limited. A free air carbon dioxide enrichment facility was operated in a maize field to generate an elevated CO2 concentration of 550 ppm. Drought was induced by the exclusion of precipitation in one half of all experimental plots. Plants were harvested, chopped and ensiled. In a balance experiment on sheep, the nutrient digestibility was determined for three climatic treatments (temperate, temperature humidity index (THI) 57-63; mild heat, THI 68-71; severe heat, THI 75-80). The CO2 concentration and drought did not alter the crude nutrient content of silage dry matter (DM) or nutrient and organic matter (OM) digestibility. Drought increased the concentration of deoxynivalenol (DON, p < 0.001). The drought-associated increase of DON was reduced by CO2 enrichment (p = 0.003). The lowest digestibility of acid detergent fibre (p = 0.024) and neutral detergent fibre (p = 0.005) was observed during the coldest climate. OM digestibility increased during mild heat (p = 0.023). This study did not indicate considerable alterations of the feed value of maize silage due to increased atmospheric CO2 and drought. Enriched CO2 may decrease DON contaminations during drought. The thermal environment during the balance experiment did not interact with feeding maize silage grown under elevated CO2, but may affect cell wall and OM digestibility.


Subject(s)
Carbon Dioxide/pharmacology , Diet/veterinary , Droughts , Sheep/physiology , Silage/analysis , Zea mays/chemistry , Animal Nutritional Physiological Phenomena , Animals , Digestion/physiology , Hot Temperature/adverse effects , Male , Nutritive Value , Zea mays/drug effects
4.
Mycotoxin Res ; 28(4): 219-27, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23606193

ABSTRACT

Future livestock production is likely to be affected by both rising ambient temperatures and indirect effects mediated by modified growth conditions of feed plants such as increased atmospheric CO2 concentrations and drought. Corn was grown at elevated CO2 concentrations of 550 ppm and drought stress using free air carbon dioxide enrichment technology. Whole plant silages were generated and fed to sheep kept at three climatic treatments. Differential blood count was performed. Plasma DON and de-epoxy-DON concentration were measured. Warmer environment increased rectal and skin temperatures and respiration rates (p < 0.001 each) but did not affect blood parameters and the almost complete metabolization of DON into de-epoxy-DON. Altered growth conditions of the corn fed did not have single effects on sheep body temperature measures and differential blood count. Though the thermoregulatory activity of sheep was influenced by the thermal environment, the investigated cultivation factors did not indicate considerable impacts on the analysed parameters.


Subject(s)
Carbon Dioxide/pharmacology , Fusarium/drug effects , Sheep, Domestic/blood , Trichothecenes/blood , Zea mays/drug effects , Animals , Biotransformation , Body Temperature Regulation , Castration , Droughts , Fusarium/physiology , Male , Silage/analysis , Silage/microbiology , Stress, Physiological , Temperature , Zea mays/chemistry , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...