Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 26(19): 19763-19769, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31089998

ABSTRACT

Nowadays, Varroa destructor is considered as a serious pest of honeybees (Apis mellifera) and its resistance to acaricides has been reported in Europe since the early 1990s. That is why new methods of treatment for Varroa mites are still in focus of many scientists. In our study, we determined the lethal concentration LC50 (72 h) of 2.425% oxalic acid solution following single spray exposure of honeybee larvae under laboratory conditions (Guideline OECD 237 2013). Potential sublethal effects of oxalic acid were monitored through the determination of the activity of antioxidant enzymes. Activation of primary antioxidant enzymes was observed at 1.75% of oxalic acid; 3.5% of oxalic acid brought on a statistically significant increase of glutathione S-transferase activity. This change was accompanied by an increase in thiobarbituric acid reactive substances, products of lipid peroxidation. Our results indicate that oxalic acid may be harmful to bee brood when present during application.


Subject(s)
Acaricides/toxicity , Antioxidants/metabolism , Bees/drug effects , Larva/drug effects , Oxalic Acid/toxicity , Animals , Bees/enzymology , Bees/growth & development , Lethal Dose 50 , Varroidae
2.
Environ Sci Pollut Res Int ; 24(16): 14060-14070, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28409431

ABSTRACT

Substantial percentage of world food production depends on pollinating service of honeybees that directly depends on their health status. Among other factors, the success of bee colonies depends on health of developed larvae. The crucial phase of larval development is the first 6 days after hatching when a worker larva grows exponentially and larvae are potentially exposed to xenobiotics via diet. In the present study, we determined the lethal concentration LC50 (72 h) following single dietary exposure of honeybee larvae to formetanate under laboratory conditions, being also the first report available in scientific literature. Activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) were also measured in the homogenates of in vitro reared honeybee larvae after single formetanate exposure. Decreased specific activity of SOD and increased activities of CAT and GST suggest the induction of oxidative stress. Higher levels of thiobarbituric reactive species in all samples supported this fact. Comparing determined larval toxicity (LC50 of 206.01 mg a.i./kg diet) with adult toxicity data, we can suppose that the larvae may be less sensitive to formetanate than the adult bees.


Subject(s)
Bees , Carbamates/toxicity , Animals , Antioxidants , Catalase , Larva/drug effects , Larva/growth & development , Lethal Dose 50
SELECTION OF CITATIONS
SEARCH DETAIL
...