Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 6: 154, 2019.
Article in English | MEDLINE | ID: mdl-33501169

ABSTRACT

Most collaborative tasks require interaction with everyday objects (e.g., utensils while cooking). Thus, robots must perceive everyday objects in an effective and efficient way. This highlights the necessity of understanding environmental factors and their impact on visual perception, such as illumination changes throughout the day on robotic systems in the real world. In object recognition, two of these factors are changes due to illumination of the scene and differences in the sensors capturing it. In this paper, we will present data augmentations for object recognition that enhance a deep learning architecture. We will show how simple linear and non-linear illumination models and feature concatenation can be used to improve deep learning-based approaches. The aim of this work is to allow for more realistic Human-Robot Interaction scenarios with a small amount of training data in combination with incremental interactive object learning. This will benefit the interaction with the robot to maximize object learning for long-term and location-independent learning in unshaped environments. With our model-based analysis, we showed that changes in illumination affect recognition approaches that use Deep Convolutional Neural Network to encode features for object recognition. Using data augmentation, we were able to show that such a system can be modified toward a more robust recognition without retraining the network. Additionally, we have shown that using simple brightness change models can help to improve the recognition across all training set sizes.

2.
Top Cogn Sci ; 6(3): 492-512, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24934106

ABSTRACT

In order for artificial intelligent systems to interact naturally with human users, they need to be able to learn from human instructions when actions should be imitated. Human tutoring will typically consist of action demonstrations accompanied by speech. In the following, the characteristics of human tutoring during action demonstration will be examined. A special focus will be put on the distinction between two kinds of motion events: path-oriented actions and manner-oriented actions. Such a distinction is inspired by the literature pertaining to cognitive linguistics, which indicates that the human conceptual system can distinguish these two distinct types of motion. These two kinds of actions are described in language by more path-oriented or more manner-oriented utterances. In path-oriented utterances, the source, trajectory, or goal is emphasized, whereas in manner-oriented utterances the medium, velocity, or means of motion are highlighted. We examined a video corpus of adult-child interactions comprised of three age groups of children-pre-lexical, early lexical, and lexical-and two different tasks, one emphasizing manner more strongly and one emphasizing path more strongly. We analyzed the language and motion of the caregiver and the gazing behavior of the child to highlight the differences between the tutoring and the acquisition of the manner and path concepts. The results suggest that age is an important factor in the development of these action categories. The analysis of this corpus has also been exploited to develop an intelligent robotic behavior-the tutoring spotter system-able to emulate children's behaviors in a tutoring situation, with the aim of evoking in human subjects a natural and effective behavior in teaching to a robot. The findings related to the development of manner and path concepts have been used to implement new effective feedback strategies in the tutoring spotter system, which should provide improvements in human-robot interaction.


Subject(s)
Artificial Intelligence , Eye Movements/physiology , Language , Learning/physiology , Psychomotor Performance/physiology , Adult , Child , Female , Humans , Imitative Behavior/physiology , Male , Robotics
3.
Top Cogn Sci ; 6(3): 534-44, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24934294

ABSTRACT

This article presents results from a multidisciplinary research project on the integration and transfer of language knowledge into robots as an empirical paradigm for the study of language development in both humans and humanoid robots. Within the framework of human linguistic and cognitive development, we focus on how three central types of learning interact and co-develop: individual learning about one's own embodiment and the environment, social learning (learning from others), and learning of linguistic capability. Our primary concern is how these capabilities can scaffold each other's development in a continuous feedback cycle as their interactions yield increasingly sophisticated competencies in the agent's capacity to interact with others and manipulate its world. Experimental results are summarized in relation to milestones in human linguistic and cognitive development and show that the mutual scaffolding of social learning, individual learning, and linguistic capabilities creates the context, conditions, and requisites for learning in each domain. Challenges and insights identified as a result of this research program are discussed with regard to possible and actual contributions to cognitive science and language ontogeny. In conclusion, directions for future work are suggested that continue to develop this approach toward an integrated framework for understanding these mutually scaffolding processes as a basis for language development in humans and robots.


Subject(s)
Artificial Intelligence , Cognition , Interpersonal Relations , Language , Learning , Child Development , Humans , Infant , Linguistics , Robotics
SELECTION OF CITATIONS
SEARCH DETAIL
...