Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Tree Physiol ; 43(5): 805-816, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36579830

ABSTRACT

Phloem loading and sugar distribution are key steps for carbon partitioning in herbaceous and woody species. Although the phloem loading mechanisms in herbs are well studied, less is known for trees. It was shown for saplings of Fagus sylvatica L. and Quercus robur L. that the sucrose concentration in the phloem sap was higher than in the mesophyll cells, which suggests that phloem loading of sucrose involves active steps. However, the question remains whether this also applies for tall trees. To approach this question, tissue-specific sugar and starch contents of small and tall trees of F. sylvatica and Q. robur as well as the sugar concentration in the subcellular compartments of mesophyll cells were examined. Moreover, sucrose uptake transporters (SUTs) were analyzed by heterology expression in yeast and the tissue-specific expressions of SUTs were investigated. Sugar content in leaves of the canopy (11 and 26 m height) was up to 25% higher compared with that of leaves of small trees of F. sylvatica and Q. robur (2 m height). The sucrose concentration in the cytosol of mesophyll cells from tall trees was between 120 and 240 mM and about 4- to 8-fold lower than the sucrose concentration in the phloem sap of saplings. The analyzed SUT sequences of both tree species cluster into three types, similar to SUTs from other plant species. Heterologous expression in yeast confirmed that all analyzed SUTs are functional sucrose transporters. Moreover, all SUTs were expressed in leaves, bark and wood of the canopy and the expression levels in small and tall trees were similar. The results show that the phloem loading in leaves of tall trees of F. sylvatica and Q. robur probably involves active steps, because there is an uphill concentration gradient for sucrose. SUTs may be involved in phloem loading.


Subject(s)
Fagus , Quercus , Trees/metabolism , Sugars/metabolism , Sucrose/metabolism , Fagus/metabolism , Quercus/metabolism , Saccharomyces cerevisiae , Phloem/metabolism , Membrane Transport Proteins , Biological Transport , Carbohydrates , Plant Leaves/metabolism
2.
Plants (Basel) ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38202331

ABSTRACT

Floral nectar contains sugars and numerous other compounds, including amino acids, but little is known about their function and origin in nectar. Therefore, the amino acid, sugar, and inorganic ion concentrations, as well as the activity of alanine aminotransferase (AlaAT) and glutamine synthetase (GS) in nectar, nectaries, and leaves were analyzed in 30 Pitcairnia species. These data were compared with various floral traits, the pollinator type, and the phylogenetic relationships of the species to find possible causes for the high amino acid concentrations in the nectar of some species. The highest concentrations of amino acids (especially alanine) in nectar were found in species with reddish flowers. Furthermore, the concentration of amino acids in nectar and nectaries is determined through analyzing flower color/pollination type rather than phylogenetic relations. This study provides new insights into the origin of amino acids in nectar. The presence of almost all amino acids in nectar is mainly due to their transport in the phloem to the nectaries, with the exception of alanine, which is partially produced in nectaries. In addition, active regulatory mechanisms are required in nectaries that retain most of the amino acids and allow the selective secretion of specific amino acids, such as alanine.

3.
Front Plant Sci ; 13: 987145, 2022.
Article in English | MEDLINE | ID: mdl-36092434

ABSTRACT

Floral nectar contains mainly sugars as well as smaller amounts of amino acids and further compounds. The nectar composition varies between different plant species and it is related to the pollination type of the plant. In addition to this, other factors can influence the composition. Nectar is produced in and secreted from nectaries. A few models exist to explain the origin of nectar for dicotyl plant species, a complete elucidation of the processes, however, has not yet been achieved. This is particularly true for monocots or plant species with CAM photosynthesis. To get closer to such an elucidation, nectar, nectaries, and leaves of 36 bromeliad species were analyzed for sugars, starch, amino acids, and inorganic ions. The species studied include different photosynthesis types (CAM/C3), different pollination types (trochilophilous/chiropterophilous), or different live forms. The main sugars in nectar and nectaries were glucose, fructose, and sucrose, the total sugar concentration was about twofold higher in nectar than in nectaries, which suggests that sugars are actively transported from the nectaries into the nectar. The composition of amino acids in nectar is already determined in the nectaries, but the concentration is much lower in nectar than in nectaries, which suggests selective retention of amino acids during nectar secretion. The same applies to inorganic ions. Statistical analyses showed that the photosynthesis type and the pollination type can explain more data variation in nectar than in nectaries and leaves. Furthermore, the pollinator type has a stronger influence on the nectar or nectary composition than the photosynthesis type. Trochilophilous C3 plants showed significant correlations between the nitrate concentration in leaves and the amino acid concentration in nectaries and nectar. It can be assumed that the more nitrate is taken up, the more amino acids are synthesized in leaves and transported to the nectaries and nectar. However, chiropterophilous C3 plants show no such correlation, which means that the secretion of amino acids into the nectar is regulated by further factors. The results help understand the physiological properties that influence nectaries and nectar as well as the manner of metabolite and ion secretion from nectaries to nectar.

4.
J Plant Physiol ; 271: 153645, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35217406

ABSTRACT

Phloem plays a central role in assimilate transport as well as in the transport of several secondary compounds. In order to study the chemical composition of phloem sap, different methods have been used for its collection, including stem incisions, EDTA-facilitated exudation or aphid stylectomy. Each collection method has several advantages and disadvantages and, unfortunately, the reported metabolite profiles and concentrations depend on the method used for exudate collection. This review therefore primarily focusses on sugars, amino acids, inorganic ions and further transported compounds like organic acids, nucleotides, phytohormons, defense signals, and lipophilic substances in the phloem sap obtained by aphid stylectomy to facilitate comparability of the data.


Subject(s)
Aphids , Phloem , Amino Acids/metabolism , Animals , Phloem/metabolism , Sugars/metabolism
5.
Nat Plants ; 8(2): 171-180, 2022 02.
Article in English | MEDLINE | ID: mdl-35194203

ABSTRACT

Phloem transport of photoassimilates from leaves to non-photosynthetic organs, such as the root and shoot apices and reproductive organs, is crucial to plant growth and yield. For nearly 90 years, evidence has been generally consistent with the theory of a pressure-flow mechanism of phloem transport. Central to this hypothesis is the loading of osmolytes, principally sugars, into the phloem to generate the osmotic pressure that propels bulk flow. Here we used genetic and light manipulations to test whether sugar import into the phloem is required as the driving force for phloem sap flow. Using carbon-11 radiotracer, we show that a maize sucrose transporter1 (sut1) loss-of-function mutant has severely reduced export of carbon from photosynthetic leaves (only ~4% of the wild type level). Yet, the mutant remarkably maintains phloem pressure at ~100% and sap flow speeds at ~50-75% of those of wild type. Potassium (K+) abundance in the phloem was elevated in sut1 mutant leaves. Fluid dynamic modelling supports the conclusion that increased K+ loading compensated for decreased sucrose loading to maintain phloem pressure, and thereby maintained phloem transport via the pressure-flow mechanism. Furthermore, these results suggest that sap flow and transport of other phloem-mobile nutrients and signalling molecules could be regulated independently of sugar loading into the phloem, potentially influencing carbon-nutrient homoeostasis and the distribution of signalling molecules in plants encountering different environmental conditions.


Subject(s)
Phloem , Zea mays , Plant Leaves/genetics , Plants , Sugars , Zea mays/genetics
6.
Front Plant Sci ; 12: 695415, 2021.
Article in English | MEDLINE | ID: mdl-34394148

ABSTRACT

The ability to develop secondary (post-cytokinetic) plasmodesmata (PD) is an important evolutionary advantage that helps in creating symplastic domains within the plant body. Developmental regulation of secondary PD formation is not completely understood. In flowering plants, secondary PD occur exclusively between cells from different lineages, e.g., at the L1/L2 interface within shoot apices, or between leaf epidermis (L1-derivative), and mesophyll (L2-derivative). However, the highest numbers of secondary PD occur in the minor veins of leaf between bundle sheath cells and phloem companion cells in a group of plant species designated "symplastic" phloem loaders, as opposed to "apoplastic" loaders. This poses a question of whether secondary PD formation is upregulated in general in symplastic loaders. Distribution of PD in leaves and in shoot apices of two symplastic phloem loaders, Alonsoa meridionalis and Asarina barclaiana, was compared with that in two apoplastic loaders, Solanum tuberosum (potato) and Hordeum vulgare (barley), using immunolabeling of the PD-specific proteins and transmission electron microscopy (TEM), respectively. Single-cell sampling was performed to correlate sugar allocation between leaf epidermis and mesophyll to PD abundance. Although the distribution of PD in the leaf lamina (except within the vascular tissues) and in the meristem layers was similar in all species examined, far fewer PD were found at the epidermis/epidermis and mesophyll/epidermis boundaries in apoplastic loaders compared to symplastic loaders. In the latter, the leaf epidermis accumulated sugar, suggesting sugar import from the mesophyll via PD. Thus, leaf epidermis and mesophyll might represent a single symplastic domain in Alonsoa meridionalis and Asarina barclaiana.

7.
PLoS One ; 15(4): e0230871, 2020.
Article in English | MEDLINE | ID: mdl-32275718

ABSTRACT

In general, honey bees (Apis mellifera L.) feed on honey produced from collected nectar. In the absence of nectar, during certain times of the year or in monocultural landscapes, honey bees forage on honeydew. Honeydew is excreted by different herbivores of the order Hemiptera that consume phloem sap of plant species. In comparison to nectar, honeydew is composed of a higher variety of sugars and additional sugars with higher molecular weight, like the trisaccharide melezitose that can be a major constituent of honeydew. However, melezitose-containing honey is known to cause malnutrition in overwintering honey bees. Following the hypothesis that melezitose may be the cause for the so called 'honeydew flow disease', three independent feeding experiments with caged bees were conducted in consecutive years. Bees fed with melezitose showed increased food uptake, higher gut weights and elevated mortality compared to bees fed a control diet. Moreover, severe disease symptoms, such as swollen abdomen, abdomen tipping and impaired movement were observed in melezitose-fed bees. 16S-amplicon sequencing indicated that the melezitose diet changed the species composition of the lactic acid bacteria community within the gut microbiota. Based on these results, we conclude that melezitose cannot be easily digested by the host and may accumulate in the hindgut. Within cages or during winter, when there is no opportunity for excretion, the accumulated melezitose can cause severe intestinal symptoms and death of the bees, probably as result of poor melezitose metabolism capabilities in the intestinal microbiota. These findings confirm the causal relation between the trisaccharide melezitose and the honeydew flow disease and indicate a possible mechanism of pathogenesis.


Subject(s)
Bees , Gastrointestinal Microbiome/drug effects , Trisaccharides/pharmacology , Animals , Drinking/drug effects , Intestines/anatomy & histology , Intestines/drug effects , Organ Size/drug effects , Survival Analysis
8.
PLoS One ; 15(1): e0228171, 2020.
Article in English | MEDLINE | ID: mdl-31978201

ABSTRACT

Several hemipteran species feed on the phloem sap of plants and produce large amounts of honeydew that is collected by bees to produce honeydew honey. Therefore, it is important to know whether it is predominantly the hemipteran species or the host plant to influence the honeydew composition. This is particularly relevant for those botanical and zoological species from which the majority of honeydew honey originates. To investigate this issue, honeydew from two Cinara species located on Abies alba as well as from two Cinara and two Physokermes species located on Picea abies were collected. Phloem exudates of the host plants were also analyzed. Honeydew of all species contained different proportions of hexoses, sucrose, melezitose, erlose, and further di- and trisaccharides, whereas the phloem exudates of the host trees contained no trisaccharides. Moreover, the proportions of sugars differed significantly between hemipteran species feeding on the same tree species. Sucrose hydrolysis and oligosaccharide formation was shown in whole-body homogenates of aphids. The type of the produced oligosaccharides in the aphid-extracts correlated with the oligosaccharide composition in the honeydew of the different aphid species. The total contents of amino acids and inorganic ions in the honeydew were much lower than the sugar content. Glutamine and glutamate were predominant amino acids in the honeydew of all six hemipteran species and also in the phloem exudates of both tree species. Potassium was the dominant inorganic ion in all honeydew samples and also in the phloem exudate. Statistical analyses reveal that the sugar composition of honeydew is determined more by the hemipteran species than by the host plant. Consequently, it can be assumed that the sugar composition of honeydew honey is also more influenced by the hemipteran species than by the host tree.


Subject(s)
Abies/metabolism , Amino Acids/analysis , Inorganic Chemicals/analysis , Picea/metabolism , Sugars/analysis , Abies/chemistry , Animals , Aphids/metabolism , Chromatography, High Pressure Liquid , Ions/chemistry , Oligosaccharides/analysis , Oligosaccharides/metabolism , Phloem/chemistry , Phloem/metabolism , Picea/chemistry , Plant Bark/chemistry , Plant Bark/metabolism , Potassium/analysis , Potassium/metabolism
9.
Oecologia ; 191(1): 113-125, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31342255

ABSTRACT

Effects of plants on herbivores can cascade up the food web and modulate the abundance of higher trophic levels. In agro-ecosystems, plant viruses can affect the interactions between crops, crop pests, and natural enemies. Little is known, however, about the effects of viruses on higher trophic levels, including parasitoids and their ability for pest regulation. We tested the hypothesis that a plant virus affects parasitoid foraging behaviour through cascading effects on higher trophic levels. We predicted that the semi-persistent Beet yellows virus (BYV) would influence plant (Beta vulgaris) quality, as well as aphid host (Aphis fabae) quality for a parasitoid Lysiphlebus fabarum. We determined amino acid and sugar content in healthy and infected plants (first trophic level), lipid content and body size of aphids (second trophic level) fed on both plants, as well as foraging behaviour and body size of parasitoids (third trophic level) that developed on aphids fed on both plants. Our results showed that virus infection increased sugars and decreased total amino acid content in B. vulgaris. We further observed an increase in aphid size without modification in host aphid quality (i.e., lipid content), and a slight effect on parasitoid behaviour through an increased number of antennal contacts with host aphids. Although the BYV virus clearly affected the first two trophic levels, it did not affect development or emergence of parasitoids. As the parasitoid L. fabarum does not seem to be affected by the virus, we discuss the possibility of using it for the development of targeted biological control against aphids.


Subject(s)
Aphids , Beta vulgaris , Closterovirus , Wasps , Animals , Ecosystem , Host-Parasite Interactions , Up-Regulation
10.
Methods Mol Biol ; 2014: 235-251, 2019.
Article in English | MEDLINE | ID: mdl-31197801

ABSTRACT

The key step of carbon export from green leaves is the loading of sugars into the phloem. To fully understand and quantify this process, it is essential to know the concentration of sugars in the different compartments of the cells along the phloem loading pathway. However, determining subcellular metabolite concentrations has been technically challenging. This paper describes a technique to measure metabolite levels in the chloroplast, the cytosol, and the vacuole of mesophyll cells with high accuracy. The nonaqueous fractionation (NAF) technique is arguably the method of choice to analyze the subcellular metabolite distributions as it minimizes the risk of metabolite interconversions or redistribution during the process. The principle of NAF is the separation of small subcellular particles, which are obtained by homogenization, lyophilization, and sonication, in a nonaqueous density gradient. Due to the varying composition-dependent density of the fragments, their segregation reflects compartmental distributions throughout the gradient. By determining marker enzymes for chloroplast stroma, cytosol, and vacuole in gradient fractions the proportions of each subcellular compartment in each gradient fraction can be analyzed. The measured distribution of marker enzymes and of metabolites in each fraction of the gradient can be used to calculate the subcellular distribution of the metabolites.


Subject(s)
Energy Metabolism , Phloem/metabolism , Plant Leaves/metabolism , Amino Acids/metabolism , Data Analysis , Intracellular Space , NADP/metabolism , Sugars/metabolism , Uridine Diphosphate/metabolism
11.
Front Plant Sci ; 10: 205, 2019.
Article in English | MEDLINE | ID: mdl-30847001

ABSTRACT

Floral nectar is the most important reward for pollinators and an integral component of the pollination syndrome. Nectar research has mainly focused on sugars or amino acids, whereas more comprehensive studies on the nectar composition of closely related plant species with different pollination types are rather limited. Nectar composition as well as concentrations of sugars, amino acids, inorganic ions, and organic acids were analyzed for 147 species of Bromeliaceae. This plant family shows a high diversity in terms of floral morphology, flowering time, and predominant pollination types (trochilophilous, trochilophilous/entomophilous, psychophilous, sphingophilous, chiropterophilous). Based on the analyses, we examined the relationship between nectar traits and pollination type in this family. Nectar of all analyzed species contained high amounts of sugars with different proportions of glucose, fructose, and sucrose. The total concentrations of amino acids, inorganic cations, and anions, or organic acids were much lower. The analyses revealed that the sugar composition, the concentrations of inorganic cations and anions as well as the concentration of malate in nectar of bat-pollinated species differed significantly from nectar of species with other pollination types. Flowers of bat-pollinated species contained a higher volume of nectar, which results in a total of about 25-fold higher amounts of sugar in bat-pollinated species than in insect-pollinated species. This difference was even higher for amino acids, inorganic anions and cations, and organic acids (between 50 and 100-fold). In general, bat-pollinated plant species invest large amounts of organic and inorganic compounds for their pollinators. Furthermore, statistical analyses reveal that the characteristics of nectar in Bromeliaceae are more strongly determined by the pollinator type rather than by taxonomic groups or phylogenetic relations. However, a considerable part of the variance cannot be explained by either of the variables, which means that additional factors must be responsible for the differences in the nectar composition.

12.
Tree Physiol ; 39(2): 284-299, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30388274

ABSTRACT

In temperate woody species, carbon transport from source to sink tissues is a striking physiological process, particularly considering seasonal changes. The functions of different tissues can also alternate across the seasons. In this regard, phloem loading and sugar distribution are important aspects of carbon partitioning, and sucrose uptake transporters (SUTs) play a key role in these processes. Therefore, the influence of seasons and different light-dark conditions on the expression of SUTs from 3-year-old Fagus sylvatica L., Quercus robur L. and Picea abies (L.) Karst. trees were analyzed. In addition, tissue-specific sugar and starch contents under these different environmental conditions were determined. Putative SUTs were identified in the gymnosperms (Picea abies, Ginkgo biloba L.), here for the first time, and also in the angiosperms (Q. robur, F. sylvatica). The identified SUT sequences of the different tree species cluster into three types, similar to other SUTs from herbaceous and tree species. Furthermore, the sequences from angiosperm and those from gymnosperm species form distinct clusters within the three types of SUTs. In F. sylvatica, Q. robur and P. abies, the expression levels of the different SUTs during seasons showed marked variations. Because of the high expression levels of type I SUTs in bark, wood and leaves during active growing phases in spring and summer, it can be assumed that they are involved in phloem loading, sucrose retrieval and possibly in further physiological processes. The expression patterns also indicate a flexible expression in all tissues depending on physiological requirements and environmental conditions. Compared with type I SUTs, the seasonal variations of type II SUT expression were less pronounced, whereas the seasonal variations of the type III SUT expression patterns were partly reverse. In addition to the seasonal regulation, the expressions of the different SUTs were also regulated by light in a diurnal manner.


Subject(s)
Fagus/metabolism , Membrane Transport Proteins/biosynthesis , Picea/metabolism , Quercus/metabolism , Sucrose/metabolism , Trees/metabolism , DNA, Complementary , DNA, Plant , Darkness , Light , Membrane Transport Proteins/genetics , Phylogeny , Seasons , Sugars/metabolism , Trees/classification
13.
Front Plant Sci ; 9: 622, 2018.
Article in English | MEDLINE | ID: mdl-29868078

ABSTRACT

Nectar composition varies between species, depending on flowering time and pollinator type, among others. Various models of the biochemical and molecular mechanisms underlying nectar production and secretion have been proposed. To gain insights into these mechanisms, day- and night-flowering tobacco (Nicotiana) species with high or low proportions of hexoses in the nectar were analyzed. Nectar and nectaries were simultaneously collected, throughout the day and night. Soluble sugars and starch were determined and the activity and expression level of cell wall invertase (CW-INVs) were measured in nectaries. Nectaries and nectar of the five Nicotiana species contained different amounts of sucrose, glucose, and fructose. CW-INV activity was detected in the nectaries of all Nicotiana species and is probably involved in the hydrolysis of sucrose in the nectary tissue and during nectar secretion. The larger differences in the sucrose-to-hexose-ratio between nectaries and nectar in diurnal species compared to nocturnal species can be explained by higher sucrose cleavage within the nectaries in night-flowering species, and during secretion in day-flowering species. However, cell wall invertase alone cannot be responsible for the differences in sugar concentrations. Within the nectaries of the Nicotiana species, a portion of the sugars is transiently stored as starch. In general, night-flowering species showed higher starch contents in the nectaries compared to day-flowering species. Moreover, in night flowering species, the starch content decreased during the first half of the dark period, when nectar production peaks. The sucrose concentrations in the cytoplasm of nectarial cells were extrapolated from nectary sucrose contents. In day-flowering species, the sucrose concentration in the nectary cytoplasm was about twice as high as in nectar, whereas in night-flowering species the situation was the opposite, which implies different secretion mechanisms. The secreted nectar sugars remained stable for the complete flower opening period, which indicates that post-secretory modification is unlikely. On the basis of these results, we present an adapted model of the mechanisms underlying the secretion of nectar sugars in day- and night-flowering Nicotiana.

14.
Planta ; 248(3): 661-673, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29882156

ABSTRACT

MAIN CONCLUSION: Sucrose concentration in phloem sap was several times higher than in the cytosol of mesophyll cells. The results suggest that phloem loading involves active steps in the analyzed tree species. Phloem loading in source leaves is a key step for carbon partitioning and passive symplastic loading has been proposed for several tree species. However, experimental evidence to prove the potential for sucrose diffusion from mesophyll to phloem is rare. Here, we analyzed three tree species (two angiosperms, Fagus sylvatica, Magnolia kobus, and one gymnosperm, Gnetum gnemon) to investigate the proposed phloem loading mechanism. For this purpose, the minor vein structure and the sugar concentrations in phloem sap as well as in the subcellular compartments of mesophyll cells were investigated. The analyzed tree species belong to the open type minor vein subcategory. The sucrose concentration in the cytosol of mesophyll cells ranged between 75 and 165 mM and was almost equal to the vacuolar concentration. Phloem sap could be collected from F. sylvatica and M. kobus and the concentration of sucrose in phloem sap was about five- and 11-fold higher, respectively, than in the cytosol of mesophyll cells. Sugar exudation of cut leaves was decreased by p-chloromercuribenzenesulfonic acid, an inhibitor of sucrose-proton transporter. The results suggest that phloem loading of sucrose in the analyzed tree species involves active steps, and apoplastic phloem loading seems more likely.


Subject(s)
Fagus/metabolism , Gnetum/metabolism , Magnolia/metabolism , Phloem/metabolism , Sugars/metabolism , Biological Transport , Cytosol/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mesophyll Cells/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose/metabolism , Trees , Vacuoles/metabolism
15.
PLoS One ; 12(5): e0176865, 2017.
Article in English | MEDLINE | ID: mdl-28467507

ABSTRACT

Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions.


Subject(s)
Amino Acids/analysis , Carbohydrates/analysis , Nicotiana/metabolism , Plant Nectar/physiology , Pollination , Amino Acids/metabolism , Animals , Birds , Chiroptera , Circadian Rhythm , Fructose/analysis , Glucose/analysis , Malates/analysis , Moths , Plant Nectar/chemistry , Pollination/physiology , Sucrose/analysis , Nicotiana/physiology
16.
Mycorrhiza ; 27(3): 233-245, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27885418

ABSTRACT

Ectomycorrhizal (EM) fungal taxonomic, phylogenetic, and trait diversity (exploration types) were analyzed in beech and conifer forests along a north-to-south gradient in three biogeographic regions in Germany. The taxonomic community structures of the ectomycorrhizal assemblages in top soil were influenced by stand density and forest type, by biogeographic environmental factors (soil physical properties, temperature, and precipitation), and by nitrogen forms (amino acids, ammonium, and nitrate). While α-diversity did not differ between forest types, ß-diversity increased, leading to higher γ-diversity on the landscape level when both forest types were present. The highest taxonomic diversity of EM was found in forests in cool, moist climate on clay and silty soils and the lowest in the forests in warm, dry climate on sandy soils. In the region with higher taxonomic diversity, phylogenetic clustering was found, but not trait clustering. In the warm region, trait clustering occurred despite neutral phylogenetic effects. These results suggest that different forest types and favorable environmental conditions in forests promote high EM species richness in top soil presumably with both high functional diversity and phylogenetic redundancy, while stressful environmental conditions lead to lower species richness and functional redundancy.


Subject(s)
Mycorrhizae/classification , Soil Microbiology , Soil/chemistry , Biodiversity , Forests , Germany , Mycorrhizae/genetics , Phylogeny , Phylogeography
17.
J Exp Bot ; 66(15): 4807-19, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26022258

ABSTRACT

Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker's yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior.


Subject(s)
Fraxinus/genetics , Membrane Transport Proteins/genetics , Plant Proteins/genetics , Sucrose/metabolism , Biological Transport , Fraxinus/metabolism , Membrane Transport Proteins/metabolism , Organisms, Genetically Modified/genetics , Organisms, Genetically Modified/metabolism , Phloem/metabolism , Plant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
18.
Planta ; 241(1): 229-41, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25269399

ABSTRACT

MAIN CONCLUSION: In Ajuga reptans, raffinose oligosaccharides accumulated during winter. Stachyose, verbascose, and higher RFO oligomers were exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. The evergreen labiate Ajuga reptans L. can grow at low temperature. The carbohydrate metabolism changes during the cold phase, e.g., raffinose family oligosaccharides (RFOs) accumulate. Additionally, A. reptans translocates RFOs in the phloem. In the present study, subcellular concentrations of metabolites were studied in summer and winter leaves of A. reptans to gain further insight into regulatory instances involved in the cold acclimation process and into the function of RFOs. Subcellular metabolite concentrations were determined by non-aqueous fractionation. Volumes of the subcellular compartments of summer and winter leaves were analyzed by morphometric measurements. The metabolite content varied strongly between summer and winter leaves. Soluble metabolites increased up to tenfold during winter whereas the starch content was decreased. In winter leaves, the subcellular distribution showed a shift of carbohydrates from cytoplasm to vacuole and chloroplast. Despite this, the metabolite concentration was higher in all compartments in winter leaves compared to summer leaves because of the much higher total metabolite content in winter leaves. The different oligosaccharides did show different compartmentations. Stachyose, verbascose, and higher RFO oligomers were almost exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. Apparently, the subcellular distribution of the RFOs differs because they fulfill different functions in plant metabolism during winter. Raffinose might function in protecting chloroplast membranes during freezing, whereas higher RFO oligomers may exert protective effects on vacuolar membranes. In addition, the high content of RFOs in winter leaves may also result from reduced consumption of assimilates.


Subject(s)
Ajuga/metabolism , Carbohydrate Metabolism , Raffinose/metabolism , Seasons , Adaptation, Physiological , Ajuga/ultrastructure , Biological Transport , Chloroplasts/metabolism , Cold Temperature , Cytoplasm/metabolism , Freezing , Microscopy, Electron, Transmission , Oligosaccharides/metabolism , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Subcellular Fractions/metabolism
19.
J Exp Bot ; 65(7): 1905-16, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24591056

ABSTRACT

Whereas most of the research on phloem loading is performed on herbaceous plants, less is known about phloem loading strategies in trees. In this study, the phloem loading mechanisms of Quercus robur and Fraxinus excelsior were analysed. The following features were examined: the minor vein structure, the sugar concentrations in phloem sap by the laser-aphid-stylet technique, the distribution of photoassimilates in the mesophyll cells by non-aqueous fractionation, gradients of sugar concentrations and osmotic pressure, and the expression of sucrose transporters. The minor vein configurations of Q. robur and F. excelsior belong to the open type. Quercus robur contained companion cells in the minor veins whereas F. excelsior showed intermediary cells in addition to ordinary companion cells. The main carbon transport form in Q. robur was sucrose (~1M). In F. excelsior high amounts of raffinose and stachyose were also transported. However, in both tree species, the osmolality of phloem sap was higher than the osmolality of the mesophyll cells. The concentration gradients between phloem sap and the cytoplasm of mesophyll cells for sucrose were 16-fold and 14-fold for Q. robur and F. excelsior, respectively. Independent of the type of translocated sugars, sucrose transporter cDNAs were cloned from both species. The results indicate that phloem loading of sucrose and other metabolites must involve active loading steps in both tree species. Quercus robur seems to be an apoplastic phloem loader while F. excelsior shows indications of being a symplastic or mixed symplastic-apoplastic phloem loader.


Subject(s)
Fraxinus/metabolism , Phloem/metabolism , Quercus/metabolism , Sucrose/metabolism , Biological Transport , Fraxinus/genetics , Fraxinus/ultrastructure , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microscopy, Electron, Transmission , Molecular Sequence Data , Phloem/ultrastructure , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Polymerase Chain Reaction , Quercus/genetics , Quercus/ultrastructure , Sequence Analysis, DNA
20.
PLoS One ; 9(1): e87689, 2014.
Article in English | MEDLINE | ID: mdl-24489951

ABSTRACT

BACKGROUND: Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared. METHODOLOGY AND PRINCIPAL FINDINGS: Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species. CONCLUSIONS/SIGNIFICANCE: The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar could be based on passive secretion from the phloem.


Subject(s)
Amino Acids/metabolism , Brassica napus/metabolism , Iridoid Glycosides/metabolism , Monosaccharides/metabolism , Phloem/metabolism , Plant Nectar/metabolism , Plant Leaves/metabolism , Seeds/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...