Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 5(9): 4634-4645, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-33448836

ABSTRACT

Full-thickness cutaneous wounds, such as deep burns, are complex wounds that often require surgical interventions. Herein, we show the efficacy of acellular grafts that can be made available off-the-shelf at an affordable cost using silk biomaterials. Silkworm silk fibroin (SF), being a cost-effective and natural biopolymer, provides essential features required for the fabrication of three-dimensional constructs for wound-healing applications. We report the treatment of third-degree burn wounds using a freeze-dried microporous scaffold of Antheraea assama SF (AaSF) functionalized with a recombinant spider silk fusion protein FN-4RepCT (FN-4RC) that holds the fibronectin cell binding motif. In order to examine the healing efficiency of functionalized silk scaffolds, an in vivo burn rat model was used, and the scaffolds were implanted by a one-step grafting procedure. The aim of our work is to investigate the efficacy of the developed acellular silk grafts for treating full-thickness wounds as well as to examine the effect of recombinant spider silk coatings on the healing outcomes. Following 14-day treatment, AaSF scaffolds coated with FN-4RC demonstrated accelerated wound healing when compared to the uncoated counterpart, commercially used DuoDERM dressing patch, and untreated wounds. Histological assessments of wounds over time further confirmed that functionalized silk scaffolds promoted wound healing, showing vascularization and re-epithelialization in the initial phase. In addition, higher extent of tissue remodeling was affirmed by the gene expression study of collagen type I and type III, indicating advanced stage of healing by the silk treatments. Thus, the present study validates the potential of scaffolds of combined silkworm silk and FN-4RC for skin regeneration.

2.
Adv Healthc Mater ; 7(24): e1801092, 2018 12.
Article in English | MEDLINE | ID: mdl-30379407

ABSTRACT

Full-thickness skin wounds, associated with deep burns or chronic wounds pose a major clinical problem. Herein, the development of in situ forming hydrogel using a natural silk fibroin (SF) biomaterial for treating burn wounds is reported. Blends of SF solutions isolated from Bombyx mori and Antheraea assama show inherent self-assembly between silk proteins and lead to irreversible gelation at body temperature. Investigation of the gelation mechanism reveals crosslinking due to formation of ß-sheet structures as examined by X-ray diffraction and Fourier transform infrared spectroscopy. The SF hydrogel supports proliferation of primary human dermal fibroblasts and migration of keratinocytes comparable to collagen gel (Col) as examined under in vitro conditions. The SF hydrogel also provides an instructive and supportive matrix to the full-thickness third-degree burn wounds in vivo. A 3-week comparative study with Col indicates that SF hydrogel not only promotes wound healing but also shows transitions from inflammation to proliferation stage as observed through the expression of TNF-α and CD163 genes. Further, deposition and remodeling of collagen type I and III fibers suggests an enhanced overall tissue regeneration. Comparable results with Col demonstrate the SF hydrogel as an effective and inexpensive formulation toward a potential therapeutic approach for burn wound treatment.


Subject(s)
Fibroins/chemistry , Hydrogels/chemistry , Regeneration , Wound Healing , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Burns/drug therapy , Burns/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Collagen/chemistry , Compressive Strength , Disease Models, Animal , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Hydrogels/pharmacology , Hydrogels/therapeutic use , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Rats , Rats, Wistar , Regeneration/drug effects , Skin/pathology , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...