Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecohydrology ; 15(8): e2471, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37034387

ABSTRACT

Fens are high conservation value ecosystems that depend on consistent discharge of groundwater that saturates the near surface for most of the growing season. Reduced groundwater inputs can result in losses of native diversity, decreases in rare-species abundance and increased invasion by non-native species. As such, fen ecosystems are known to be particularly susceptible to changes in groundwater conditions including reduction in water levels due to nearby groundwater pumping. However, research is lacking on whether floristic degradation is influenced by feedbacks between hydrology and soil properties. We present a model of an archetype hillslope fen that couples a hydrological niche model with a variably saturated groundwater flow model to predict changes in vegetation composition in response to different groundwater drawdown scenarios. The model explores a potential edaphic feedback through the use of an observed relationship between fen floristic quality and soil/peat water retention characteristics that is attenuated with separate edaphic and floristic memory terms representing lags in biophysical responses to dewatering. Model parameters were determined based on data collected from six fens in Wisconsin under various states of degradation. We observed different water retention characteristics between sites that were minimally impacted versus degraded that are likely due to peat decomposition, oxidation and compaction at the degraded sites. These characteristics were also correlated with floristic quality. The results reveal a complex response to drawdown where changes in peat hydraulic properties following dewatering lead to even drier conditions and further shifts away from typical fen species.

2.
Sci Total Environ ; 806(Pt 3): 151296, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34736755

ABSTRACT

Trees in the urban right-of-way areas have increasingly been considered part of a suite of green infrastructure practices used to manage stormwater runoff. A paired-catchment experimental design (with street tree removal as the treatment) was used to assess how street trees affect major hydrologic fluxes in a typical residential stormwater collection and conveyance network. The treatment consisted of removing 29 green ash (Fraxinus pennsylvanica) and two Norway maple (Acer platanoides) street trees from a medium-density residential area. Tree removal resulted in an estimated 198 m3 increase in surface runoff volume compared to the control catchment over the course of the study. This increase accounted for 4% of the total measured runoff after trees were removed. Despite significant changes to runoff volume (p ≤ 0.10), peak discharge was generally not affected by tree removal. On a per-tree basis, 66 L of rainfall per m2 of canopy was lost that would have otherwise been intercepted and stored. Runoff volume reduction benefit was estimated at 6376 L per tree. These values experimentally document per-capita retention services rendered by trees over a growing season with 42 storm events. These values are within the range reported by previous studies, which largely relied on simulation. This study provides catchment scale evidence that reducing stormwater runoff is one of many ecosystem services provided by street trees. This study quantifies these services, based on site conditions and a mix of deciduous species, and serves to improve our ability to account for this important yet otherwise poorly constrained hydrologic service. Engineers, city planners, urban foresters, and others involved with the management of urban stormwater can use this information to better understand tradeoffs involved in using green infrastructure to reduce urban runoff burden.


Subject(s)
Trees , Water Movements , Cities , Ecosystem , Hydrology , Rain
3.
J Environ Qual ; 49(3): 723-734, 2020 May.
Article in English | MEDLINE | ID: mdl-33016394

ABSTRACT

Groundwater withdrawal has increased over the past several decades throughout the U.S. Upper Midwest, yet impacts of pumping on groundwater-dependent wetlands remain understudied. Here, we compared measures of floristic quality, hydrologic conditions, and nutrient availability in pairs of more-impacted fens and less-impacted fens throughout Wisconsin. Floristic quality was significantly lower in more-impacted fens than in less-impacted fens, the result of the disappearance of rare and specialist species and the increase in richness and cover of non-native and weedy species. Plots within more-impacted fens generally had lower root-zone volumetric water content, greater depth to water table, and higher available nitrogen and phosphorus than within less-impacted fens, although nonuniformly among or within sites. Lower volumetric water content predicted plot-level declines in floristic quality, richness of rare or specialist species, an increase in the number of non-native or problematic species, and an increase in cover of non-native and problematic species. Our results strongly suggest that groundwater withdrawals have substantial negative impacts on nearby fen quality and furthering imperilment of several species they contain.


Subject(s)
Groundwater , Hydrology , Nitrogen , Wetlands , Wisconsin
4.
Sci Total Environ ; 693: 133484, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31374507

ABSTRACT

Eutrophication of freshwaters occurs in watersheds with excessive pollution of phosphorus (P). Factors that affect P cycling and transport, including climate and land use, are changing rapidly and can have legacy effects, making future freshwater quality uncertain. Focusing on the Yahara Watershed (YW) of southern Wisconsin, USA, an intensive agricultural landscape, we explored the relative influence of land use and climate on three indicators of water quality over a span of 57 years (2014-2070). The indicators included watershed-averaged P yield from the land surface, direct drainage P loads to a lake, and average summertime lake P concentration. Using biophysical model simulations of future watershed scenarios, we found that climate exerted a stronger influence than land use on all three indicators, yet land use had an important role in influencing long term outcomes for each. Variations in P yield due to land use exceeded those due to climate in 36 of 57 years, whereas variations in load and lake total P concentration due to climate exceeded those due to land use in 54 of 57 years, and 52 of 57 years, respectively. The effect of land use was thus strongest for P yield off the landscape and attenuated in the stream and lake aquatic systems where the influence of weather variability was greater. Overall these findings underscore the dominant role of climate in driving inter-annual nutrient fluxes within the hydrologic network and suggest a challenge for land use to influence water quality within streams and lakes over timescales less than a decade. Over longer timescales, reducing applications of P throughout the watershed was an effective management strategy under all four climates investigated, even during decades with wetter conditions and more frequent extreme precipitation events.

5.
Ecol Appl ; 28(1): 119-134, 2018 01.
Article in English | MEDLINE | ID: mdl-28944518

ABSTRACT

Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive land-use changes and management may buffer water quality against undesirable future climate changes, but changing climate may overwhelm management efforts to sustain freshwater supply and flood regulation. Spatially, changes in ecosystem services were heterogeneous across the landscape, underscoring the power of local actions and fine-scale management. Our research highlights the value of embracing spatial and temporal perspectives in managing ecosystem services and their complex interactions, and provides a system-level understanding for achieving sustainability of the food-water-climate nexus in agricultural landscapes.


Subject(s)
Agriculture , Ecosystem , Sustainable Development , Wisconsin
6.
Remote Sens (Basel) ; 8(7): 597, 2016.
Article in English | MEDLINE | ID: mdl-30002923

ABSTRACT

Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to the quantification of agroecosystem processes. In this study, we assessed the universality of the relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and Green Chlorophyll Index (CIGreen). Based on this dataset, we developed global LAI-VI relationships for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. These relationships explain more than half of the total variance in ground LAI observations (R2 >0.5), and provide LAI estimates with RMSE below 1.2 m2/m2. Among the five VIs, EVI/EVI2 are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by TS, are robust when tested by three independent validation datasets of varied spatial scales. While the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships, the relationships provided here represent global universality on an average basis, allowing the generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research.

7.
Ground Water ; 50(3): 340-7, 2012.
Article in English | MEDLINE | ID: mdl-22463129

ABSTRACT

Characterizing both spatial and temporal soil moisture (θ) dynamics at site scales is difficult with existing technologies. To address this shortcoming, we developed a distributed soil moisture sensing system that employs a distributed temperature sensing system to monitor thermal response at 2 m intervals along the length of a buried cable which is subjected to heat pulses. The cable temperature response to heating, which is strongly dependent on soil moisture, was empirically related to colocated, dielectric-based θ measurements at three locations. Spatially distributed, and temporally continuous estimates of θ were obtained in dry conditions (θ≤ 0.31) using this technology (root mean square error [RMSE] = 0.016), but insensitivity of the instrument response curve adversely affected accuracy under wet conditions (RMSE = 0.050).


Subject(s)
Environmental Monitoring/methods , Hot Temperature , Soil , Water/analysis , Calibration
8.
Environ Sci Technol ; 40(10): 3336-41, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16749702

ABSTRACT

The interaction between surface and subsurface waters through hyporheic exchange and baseflow is critical to maintaining ecological health in streams. During warm periods, groundwater-surface water interactions have two primary effects on stream temperature: (1) cool groundwater discharging as baseflow lowers stream temperature and (2) hyporheic exchange buffers diurnal stream temperature variations. We demonstrate, for the first time, how high-resolution, remotely sensed forward-looking infrared (FLIR) images and instream temperature data can be used to quantify detailed spatial patterns of groundwater discharge to a 1.7 km reach of Cottonwood Creek in Plumas National Forest, CA. We quantifythe individual effects of baseflow and hyporheic exchange on stream temperatures by simulating the stream energy budget under different conceptual models of the stream-aquifer interaction. Observed spatial and temporal patterns of stream temperature are consistent with an increase in baseflow and hyporheic exchange within the middle, restored stream reach when compared to groundwater fluxes in the surrounding, unrestored reaches. One implication is that pond and plug stream restoration may improve the aquatic habitat by depressing maximum stream temperatures by > 3 degrees C (K).


Subject(s)
Ecosystem , Environmental Monitoring , Rivers/chemistry , Water Pollutants/analysis , Water Supply , Temperature , Thermography , Time Factors
9.
Ground Water ; 42(6-7): 939-44, 2004.
Article in English | MEDLINE | ID: mdl-15584307

ABSTRACT

Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.


Subject(s)
Solar Energy , Water Supply , Artifacts , Environmental Monitoring , Permeability , Pressure , Reproducibility of Results , Soil , Transducers
10.
Ground Water ; 40(1): 25-36, 2002.
Article in English | MEDLINE | ID: mdl-11798043

ABSTRACT

The potential of direct-push technology for hydraulic characterization of saturated flow systems was investigated at a field site with a considerable degree of subsurface control. Direct-push installations were emplaced by attaching short lengths of screen (shielded and unshielded) to the bottom end of a tool string that was then advanced into the unconsolidated sediments. A series of constant-rate pumping tests were performed in a coarse sand and gravel aquifer using direct-push tool strings as observation wells. Very good agreement (within 4%) was found between hydraulic conductivity (K) estimates from direct-push installations and those from conventional wells. A program of slug tests was performed in direct-push installations using small-diameter adaptations of solid-slug and pneumatic methods. In a sandy silt interval of moderate hydraulic conductivity, K values from tests in a shielded screen tool were in excellent agreement (within 2%) with those from tests in a nearby well. In the coarse sand and gravel aquifer, K values were within 12% of those from multilevel slug tests at a nearby well. However, in the more permeable portions of the aquifer (K > 70 m/day), the smaller-diameter direct-push rods (0.016 m inner diameter [I.D.]) attenuated test responses, leading to an underprediction of K. In those conditions, use of larger-diameter rods (e.g., 0.038 m I.D.) is necessary to obtain kappa values representative of the formation. This investigation demonstrates that much valuable information can be obtained from hydraulic tests in direct-push installations. As with any type of hydraulic test, K estimates are critically dependent on use of appropriate emplacement and development procedures. In particular, driving an unshielded screen through a heterogeneous sequence will often lead to a buildup of low-K material that can be difficult to remove with standard development procedures.


Subject(s)
Environmental Monitoring , Water Movements , Equipment Design , Pressure , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...