Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
Anim Genet ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721753

ABSTRACT

Cats with a distinctive white hair pattern of unknown molecular cause have been discovered in the Finnish domestic cat population. Based on the unique appearance of these cats, we have named this phenotype salmiak ("salty licorice"). The use of a commercially available panel test to genotype four salmiak-colored cats revealed the absence of all known variants associated with white-haired phenotypic loci: full White (W), Spotting (Ws) and the Birman white Gloves associated (wg) allele of the KIT proto-oncogene (KIT) gene. Whole-genome sequencing on two salmiak-colored cats was conducted to search for candidate causal variants in the KIT gene. Despite a lack of coding variants, visual inspection of the short read alignments revealed a large ~95 kb deletion located ~65 kb downstream of the KIT gene in the salmiak cats. Additional PCR genotyping of 180 domestic cats and three salmiak-colored cats confirmed the homozygous derived variant genotype fully concordant with the salmiak phenotype. We suggest the newly identified variant be designated as wsal for "w salmiak".

2.
Genes (Basel) ; 15(1)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38255002

ABSTRACT

Idiopathic epilepsy (IE) has been known to be inherited in the Belgian Tervuren for many decades. Risk genotypes for IE in this breed have recently been identified on Canis familiaris chromosomes (CFA) 14 and 37. In the current study, the allele frequencies of these loci were analyzed to determine whether dog breeders had employed a purposeful selection against IE, leading to a reduction in risk-associated allele frequency within the breed over time. The allele frequencies of two generational groupings of Belgian Tervuren with and without IE were compared. Allele frequencies for risk-associated alleles on CFA14 were unchanged between 1985 and 2015, whereas those on CFA37 increased during that time in the control population (p < 0.05). In contrast, dogs with IE showed a decrease (p < 0.05) in the IE risk-associated allele frequency at the CFA37 locus. Seizure prevalence in the Belgian Tervuren appears to be increasing. These results suggest that, despite awareness that IE is inherited, selection against IE has not been successful.


Subject(s)
Epilepsy , Animals , Dogs , Alleles , Belgium/epidemiology , Seizures , Gene Frequency
3.
Mol Genet Metab ; 141(3): 108149, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277988

ABSTRACT

We investigated a syndromic disease comprising blindness and neurodegeneration in 11 Saarlooswolfdogs. Clinical signs involved early adult onset retinal degeneration and adult-onset neurological deficits including gait abnormalities, hind limb weakness, tremors, ataxia, cognitive decline and behavioral changes such as aggression towards the owner. Histopathology in one affected dog demonstrated cataract, retinal degeneration, central and peripheral axonal degeneration, and severe astroglial hypertrophy and hyperplasia in the central nervous system. Pedigrees indicated autosomal recessive inheritance. We mapped the suspected genetic defect to a 15 Mb critical interval by combined linkage and autozygosity analysis. Whole genome sequencing revealed a private homozygous missense variant, PCYT2:c.4A>G, predicted to change the second amino acid of the encoded ethanolamine-phosphate cytidylyltransferase 2, XP_038402224.1:(p.Ile2Val). Genotyping of additional Saarlooswolfdogs confirmed the homozygous genotype in all eleven affected dogs and demonstrated an allele frequency of 9.9% in the population. This experiment also identified three additional homozygous mutant young dogs without overt clinical signs. Subsequent examination of one of these dogs revealed early-stage progressive retinal atrophy (PRA) and expansion of subarachnoid CSF spaces in MRI. Dogs homozygous for the pathogenic variant showed ether lipid accumulation, confirming a functional PCYT2 deficiency. The clinical and metabolic phenotype in affected dogs shows some parallels with human patients, in whom PCYT2 variants lead to a rare form of spastic paraplegia or axonal motor and sensory polyneuropathy. Our results demonstrate that PCYT2:c.4A>G in dogs cause PCYT2 deficiency. This canine model with histopathologically documented retinal, central, and peripheral neurodegeneration further deepens the knowledge of PCYT2 deficiency.


Subject(s)
Dog Diseases , Retinal Degeneration , Humans , Dogs , Animals , Retinal Degeneration/genetics , Genotype , Retina/pathology , Phenotype , Mutation, Missense , Dog Diseases/genetics
4.
iScience ; 26(12): 108423, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38077144

ABSTRACT

Human-pet attachment can impact the life of both parties, and the identification of underlying characteristics related to attachment style can improve human-pet relationships. We employed structural equation modeling (SEM) to explore associations between human, dog, and cat personalities, owner mental well-being, unwanted pet behavior, and attachment styles in a sample of 2,724 Finnish pet owners (92% women) and their 2,545 dogs and 788 cats. Our findings reveal that owner neuroticism and poor mental well-being are linked to anxious pet attachment in both dog and cat owners. Pet characteristics, such as unwanted behavior and lower human sociability are associated with avoidant attachment style. Overall, this study highlights the significance of individual traits in both pets and owners contributing to insecure attachment styles and underscores the potential to enhance the well-being of both pets and their owners through a deeper understanding of these traits.

5.
PLoS One ; 18(12): e0295851, 2023.
Article in English | MEDLINE | ID: mdl-38153936

ABSTRACT

Multiocular defect has been described in different canine breeds, including the Old English Sheepdog. Affected dogs typically present with multiple and various ocular abnormalities. We carried out whole genome sequencing on an Old English Sheepdog that had been diagnosed with hereditary cataracts at the age of five and then referred to a board-certified veterinary ophthalmologist due to owner-reported visual deterioration. An ophthalmic assessment revealed that there was bilateral vitreal degeneration, macrophthalmos, and spherophakia in addition to cataracts. Follow-up consultations revealed cataract progression, retinal detachment, uveitis and secondary glaucoma. Whole genome sequence filtered variants private to the case, shared with another Old English Sheepdog genome and predicted to be deleterious were genotyped in an initial cohort of six Old English Sheepdogs (three affected by multiocular defect and three control dogs without evidence of inherited eye disease). Only one of the twenty-two variants segregated correctly with multiocular defect. The variant is a single nucleotide substitution, located in the collagen-type gene COL11A1, c.1775T>C, that causes an amino acid change, p.Phe1592Ser. Genotyping of an additional 14 Old English Sheepdogs affected by multiocular defect revealed a dominant mode of inheritance with four cases heterozygous for the variant. Further genotyping of hereditary cataract-affected Old English Sheepdogs revealed segregation of the variant in eight out of nine dogs. In humans, variants in the COL11A1 gene are associated with Stickler syndrome type II, also dominantly inherited.


Subject(s)
Cataract , Connective Tissue Diseases , Retinal Detachment , Humans , Dogs , Animals , Mutation , Retinal Detachment/genetics , Retinal Detachment/veterinary , Retinal Detachment/complications , Connective Tissue Diseases/diagnosis , Cataract/genetics , Cataract/veterinary , Cataract/complications , Collagen Type XI/genetics , Pedigree
7.
Genome Med ; 15(1): 73, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723491

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) is a life-threatening heart disease and a common cause of heart failure due to systolic dysfunction and subsequent left or biventricular dilatation. A significant number of cases have a genetic etiology; however, as a complex disease, the exact genetic risk factors are largely unknown, and many patients remain without a molecular diagnosis. METHODS: We performed GWAS followed by whole-genome, transcriptome, and immunohistochemical analyses in a spontaneously occurring canine model of DCM. Canine gene discovery was followed up in three human DCM cohorts. RESULTS: Our results revealed two independent additive loci associated with the typical DCM phenotype comprising left ventricular systolic dysfunction and dilatation. We highlight two novel candidate genes, RNF207 and PRKAA2, known for their involvement in cardiac action potentials, energy homeostasis, and morphology. We further illustrate the distinct genetic etiologies underlying the typical DCM phenotype and ventricular premature contractions. Finally, we followed up on the canine discoveries in human DCM patients and discovered candidate variants in our two novel genes. CONCLUSIONS: Collectively, our study yields insight into the molecular pathophysiology of DCM and provides a large animal model for preclinical studies.


Subject(s)
Cardiomyopathy, Dilated , Humans , Animals , Dogs , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/veterinary , Homeostasis , Models, Animal , Phenotype , Risk Factors
8.
Genome Biol ; 24(1): 187, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582787

ABSTRACT

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Subject(s)
Wolves , Dogs , Animals , Wolves/genetics , Chromosome Mapping , Alleles , Polymorphism, Single Nucleotide , Nucleotides , Demography
9.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37433053

ABSTRACT

Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149 T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007 T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.


Subject(s)
Wolves , Dogs , Animals , Wolves/genetics , Multifactorial Inheritance , Genome , Genomics , Base Sequence
10.
Anim Genet ; 54(5): 606-612, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37438956

ABSTRACT

Hemophilia A is the most common inherited coagulation factor disorder in dogs. It manifests as excessive bleeding resulting from pathogenic variants in the X-chromosomal F8 gene encoding coagulation factor VIII (FVIII) protein. In this study, we performed careful clinical phenotyping to confirm hemophilia A in two distinct Labrador Retriever (LR) pedigrees. Whole-genome sequencing on an affected dog from litter 1 identified a case-specific frameshift deletion variant in F8 predicted to cause a premature stop codon (c.2923_2924del, p.(E975Kfs*8)). This variant was hemizygous in all the affected males from litter 1 (n = 3), while all the unaffected LRs in the pedigree were heterozygous or wild-type (n = 22). Additionally, screened samples from 199 LRs were all found to be wild-type. As a result of this study, a gene test can now be developed to screen dogs before breeding to prevent further cases. However, it is important to note that the affected LR with decreased FVIII activity from litter 2 was wild-type for the identified deletion variant, and no segregating F8 variants were detected when this dog's DNA sample was whole-genome sequenced. Thus, the cause of decreased FVIII activity in this dog remains to be unraveled in future studies.


Subject(s)
Dog Diseases , Hemophilia A , Male , Dogs , Animals , Factor VIII/genetics , Hemophilia A/genetics , Hemophilia A/veterinary , Frameshift Mutation , Heterozygote , Dog Diseases/genetics
11.
PLoS One ; 18(5): e0284570, 2023.
Article in English | MEDLINE | ID: mdl-37163464

ABSTRACT

During pregnancy and parturition, female dogs have to cope with various challenges such as providing nutrients for the growth of the fetuses, hormonal changes, whelping, nursing, milk production, and uterine involution. Metabolomic research has been used to characterize the influence of several factors on metabolism such as inter- and intra-individual factors, feeding, aging, inter-breed differences, drug action, behavior, exercise, genetic factors, neuter status, and pathologic processes. Aim of this study was to identify metabolites showing specific changes in blood serum at the different phases of pregnancy and lactation. In total, 27 privately owned female dogs of 21 different breeds were sampled at six time points: during heat, in early, mid and late pregnancy, at the suspected peak of lactation and after weaning. A validated and highly automated canine-specific NMR metabolomics technology was utilized to quantitate 123 measurands. It was evaluated which metabolite concentrations showed significant changes between the different time points. Metabolites were then grouped into five clusters based on concentration patterns and biochemical relationships between the metabolites: high in mid-pregnancy, low in mid-pregnancy, high in late pregnancy, high in lactation, and low in lactation. Several metabolites such as albumin, glycoprotein acetyls, fatty acids, lipoproteins, glucose, and some amino acids show similar patterns during pregnancy and lactation as shown in humans. The patterns of some other parameters such as branched-chain amino acids, alanine and histidine seem to differ between these species. For most metabolites, it is yet unstudied whether the observed changes arise from modified resorption from the intestines, modified production, or metabolism in the maternal or fetal tissues. Hence, further species-specific metabolomic research may support a broader understanding of the physiological changes caused by pregnancy that are likely to be key for the normal fetal growth and development. Our findings provide a baseline of normal metabolic changes during healthy canine pregnancy and parturition. Combined with future metabolomics findings, they may help monitor vital functions of pre-, intra-, and post-partum bitches and may allow early detection of illness.


Subject(s)
Lactation , Milk , Humans , Dogs , Pregnancy , Animals , Female , Milk/metabolism , Lactation/metabolism , Parturition , Postpartum Period , Fatty Acids/metabolism , Metabolomics
12.
iScience ; 26(5): 106691, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37168553

ABSTRACT

Personality in pets and other domesticated animals is important for their well-being and it can also influence human-animal relationships. Genetic and environmental factors influencing unwanted behavior in dogs are somewhat well known, but the factors influencing dog personality remain understudied. Here we examined environmental and demographic factors associated with seven broad personality traits in a survey of over 11,000 dogs. We utilized linear models and extensive model validation to examine the factors that have the most significant influences on personality and calculated effect sizes to assess the importance of these variables. Breed and age had the strongest associations with dog personality traits. Some environmental factors, especially puppyhood socialization, were also associated with personality. All factors had small effect sizes, highlighting that a lot of variation in personality remains unexplained. Our results indicate that personality traits are complex and strikingly similar in dogs, humans, and other nonhuman animals.

13.
R Soc Open Sci ; 10(4): 221104, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37122947

ABSTRACT

The rising trend in non-communicable chronic inflammatory diseases coincides with changes in Western lifestyle. While changes in the human microbiota may play a central role in the development of chronic diseases, estimating the contribution of associated lifestyle factors remains challenging. We studied the influence of lifestyle-diet, antibiotic use, and residential environment with housing and family-on the gut microbiota of healthy and owner-reported atopic pet dogs, searching for associations between the lifestyle factors, atopy and microbiota. The results showed that atopic and healthy dogs had contrasting gut microbial composition. The gut microbiota also differed between two breeds, Labrador Retriever and Finnish Lapphund, selected for our study. Among all lifestyle factors studied, diet was most significantly associated with gut microbiota but only weakly with atopic symptoms. Thus, diet- and atopy-associated changes in the microbiota were not interrelated. Instead, the severity of symptoms was positively associated with the usage of antibiotics, which in turn was associated with the microbiota composition. Urban lifestyle was significantly associated with the increased prevalence of allergies but not with the gut microbiota. Our results from pet dogs supported previous evidence from humans, demonstrating that antibiotics, gut microbiota and atopic manifestation are interrelated. This congruence suggests that canine atopy might be a promising model for understanding the aetiology of human allergy.

14.
Hum Genet ; 142(8): 1221-1230, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37222814

ABSTRACT

Hereditary hyperekplexia is a rare neuronal disorder characterized by an exaggerated startle response to sudden tactile or acoustic stimuli. In this study, we present a Miniature Australian Shepherd family showing clinical signs, which have genetic and phenotypic similarities with human hereditary hyperekplexia: episodes of muscle stiffness that could occasionally be triggered by acoustic stimuli. Whole genome sequence data analysis of two affected dogs revealed a 36-bp deletion spanning the exon-intron boundary in the glycine receptor alpha 1 (GLRA1) gene. Further validation in pedigree samples and an additional cohort of 127 Miniature Australian Shepherds, 45 Miniature American Shepherds and 74 Australian Shepherds demonstrated complete segregation of the variant with the disease, according to an autosomal recessive inheritance pattern. The protein encoded by GLRA1 is a subunit of the glycine receptor, which mediates postsynaptic inhibition in the brain stem and spinal cord. The canine GLRA1 deletion is located in the signal peptide and is predicted to cause exon skipping and subsequent premature stop codon resulting in a significant defect in glycine signaling. Variants in GLRA1 are known to cause hereditary hyperekplexia in humans; however, this is the first study to associate a variant in canine GLRA1 with the disorder, establishing a spontaneous large animal disease model for the human condition.


Subject(s)
Hyperekplexia , Stiff-Person Syndrome , Humans , Dogs , Animals , Hyperekplexia/genetics , Stiff-Person Syndrome/genetics , Stiff-Person Syndrome/veterinary , Receptors, Glycine/genetics , Australia
15.
Mov Disord ; 38(6): 1094-1099, 2023 06.
Article in English | MEDLINE | ID: mdl-37023257

ABSTRACT

BACKGROUND: Some paroxysmal movement disorders remain without an identified genetic cause. OBJECTIVES: The aim was to identify the causal genetic variant for a paroxysmal dystonia-ataxia syndrome in Weimaraner dogs. METHODS: Clinical and diagnostic investigations were performed. Whole genome sequencing of one affected dog was used to identify private homozygous variants against 921 control genomes. RESULTS: Four Weimaraners were presented for episodes of abnormal gait. Results of examinations and diagnostic investigations were unremarkable. Whole genome sequencing revealed a private frameshift variant in the TNR (tenascin-R) gene in an affected dog, XM_038542431.1:c.831dupC, which is predicted to truncate more than 75% of the open read frame. Genotypes in a cohort of 4 affected and 70 unaffected Weimaraners showed perfect association with the disease phenotype. CONCLUSIONS: We report the association of a TNR variant with a paroxysmal dystonia-ataxia syndrome in Weimaraners. It might be relevant to include sequencing of this gene in diagnosing humans with unexplained paroxysmal movement disorders. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebellar Ataxia , Dystonia , Dystonic Disorders , Humans , Dogs , Animals , Dystonia/genetics , Dystonia/veterinary , Dystonic Disorders/genetics , Genotype , Phenotype , Ataxia
16.
Vet J ; 293: 105956, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36791876

ABSTRACT

Epilepsy is a challenging multifactorial disorder with a complex genetic background. Our current understanding of the pathophysiology and treatment of epilepsy has substantially increased due to animal model studies, including canine studies, but additional basic and clinical research is required. Drug-resistant epilepsy is an important problem in both dogs and humans, since seizure freedom is not achieved with the available antiseizure medications. The evaluation and exploration of pharmacological and particularly non-pharmacological therapeutic options need to remain a priority in epilepsy research. Combined efforts and sharing knowledge and expertise between human medical and veterinary neurologists are important for improving the treatment outcomes or even curing epilepsy in dogs. Such interactions could offer an exciting approach to translate the knowledge gained from people and rodents to dogs and vice versa. In this article, a panel of experts discusses the similarities and knowledge gaps in human and animal epileptology, with the aim of establishing a common framework and the basis for future translational epilepsy research.


Subject(s)
Dog Diseases , Drug Resistant Epilepsy , Epilepsy , Neurology , Humans , Animals , Dogs , Dog Diseases/drug therapy , Epilepsy/veterinary , Drug Resistant Epilepsy/veterinary , Treatment Outcome , Anticonvulsants/therapeutic use
17.
Front Vet Sci ; 10: 1105113, 2023.
Article in English | MEDLINE | ID: mdl-36816179

ABSTRACT

Introduction: Reproduction causes major hormonal and physiological changes to the female body. However, the metabolic changes occurring during canine reproduction are scarcely studied. Methods: In this cross-sectional study, we assessed the metabolic effects of canine reproductive status using a 1H NMR metabolomics platform optimized and validated for canine use. The study population consisted of a total of 837 healthy, intact female dogs in breeding age, of which 663 dogs were in anestrus, 78 in heat, 43 were pseudopregnant, 15 were pregnant, and 38 were lactating. The differences in metabolite profiles between these states were studied by the Kruskal-Wallis test with post-hoc tests performed using the Dunn's test, and visualized by box plots and a heatmap. The ability of the metabolite profile to differentiate pregnant dogs from non-pregnant ones was assessed by creating a multivariate Firth logistic regression model using forward stepwise selection. Results: Lactation, pregnancy and heat all were associated with distinct metabolic changes; pregnancy caused major changes in the concentrations of glycoprotein acetyls, albumin and creatinine, and smaller changes in several lipids, citrate, glutamine, and alanine. Pseudopregnancy, on the other hand, metabolically largely resembled anestrus. Lactation caused major changes in amino acid concentrations and smaller changes in several lipids, albumin, citrate, creatinine, and glycoprotein acetyls. Heat, referring to proestrus and estrus, affected cholesterol and LDL metabolism, and increased HDL particle size. Albumin and glycoprotein acetyls were the metabolites included in the final multivariate model for pregnancy detection, and could differentiate pregnant dogs from non-pregnant ones with excellent sensitivity and specificity. Discussion: These results increase our understanding of the metabolic consequences of canine reproduction, with the possibility of improving maternal health and ensuring reproductive success. The identified metabolites could be used for confirming canine pregnancy.

18.
J Am Vet Med Assoc ; 261(5): 652-660, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36840938

ABSTRACT

OBJECTIVE: To identify potential risk factors for feline litter box issues (eg, house soiling). ANIMALS: 3,049 privately owned cats. PROCEDURES: Data were collected using a validated, owner-completed survey with convenience sampling. The feline behavior and personality survey included 138 statements related to cat behavior and questions concerning cat background and health. Statements related to litter box issues were subjected to factor analysis. Associations between the identified factors and personality and background variables were studied using generalized linear models. Strength of these associations (ie, importance) was evaluated by calculating relative and absolute effect sizes. RESULTS: Factor analysis yielded 2 factors: house soiling and litter box fussiness. This study suggests that fearful cats are more prone to both forms of litter box issues than nonfearful individuals. Other associations we found differed between factors. For example, low sociability toward cats, male sex, and being intact associated only with increased house soiling and older age only with litter box fussiness. The most important variables in the litter box models (ie, sociability toward cats, breed, and activity/playfulness) failed to reach the suggested cutoff for a small effect size. CLINICAL RELEVANCE: Numerous variables are thought to influence litter box issues, but few studies have examined their relevance. Here, we studied the associations of over 30 background variables and personality traits with 2 litter box issue factors to estimate their importance at the population level. Our results bring new knowledge to this field and may contribute to finding new solutions for these complex issues in the future.


Subject(s)
Behavior, Animal , Cat Diseases , Cats , Male , Animals , Personality , Eliminative Behavior, Animal , Sterilization, Reproductive/veterinary , Sterilization
19.
PLoS Genet ; 19(1): e1010599, 2023 01.
Article in English | MEDLINE | ID: mdl-36693108

ABSTRACT

Chronic kidney disease (CKD) affects 10% of the human population, with only a small fraction genetically defined. CKD is also common in dogs and has been diagnosed in nearly all breeds, but its genetic basis remains unclear. Here, we performed a Bayesian mixed model genome-wide association analysis for canine CKD in a boxer population of 117 canine cases and 137 controls, and identified 21 genetic regions associated with the disease. At the top markers from each CKD region, the cases carried an average of 20.2 risk alleles, significantly higher than controls (15.6 risk alleles). An ANOVA test showed that the 21 CKD regions together explained 57% of CKD phenotypic variation in the population. Based on whole genome sequencing data of 20 boxers, we identified 5,206 variants in LD with the top 50 BayesR markers. Following comparative analysis with human regulatory data, 17 putative regulatory variants were identified and tested with electrophoretic mobility shift assays. In total four variants, three intronic variants from the MAGI2 and GALNT18 genes, and one variant in an intergenic region on chr28, showed alternative binding ability for the risk and protective alleles in kidney cell lines. Many genes from the 21 CKD regions, RELN, MAGI2, FGFR2 and others, have been implicated in human kidney development or disease. The results from this study provide new information that may enlighten the etiology of CKD in both dogs and humans.


Subject(s)
Genome-Wide Association Study , Renal Insufficiency, Chronic , Dogs , Humans , Animals , Bayes Theorem , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/veterinary , Renal Insufficiency, Chronic/epidemiology , Kidney , Alleles , Polymorphism, Single Nucleotide
20.
iScience ; 25(10): 105265, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36274942

ABSTRACT

Problematic behavior is a remarkable welfare issue in cats (Felis catus), as it is one of the most common reasons for relinquishment. The probability of developing problematic behaviors is likely influenced by several variables, but these remain little studied. In this study, we examined the associations of fearfulness, aggression toward humans, and excessive grooming with nearly thirty variables in a survey dataset of over 3,200 cats. To identify the most important variables influencing these behaviors, we used generalized linear models. All behaviors were associated with each other suggesting comorbidity between problematic behaviors. Breed and several environmental variables were also associated with behaviors. Poor socialization with humans and a history of being a rescue cat were associated with higher fearfulness, indicating that the proper socialization of kittens is beneficial for avoiding fear-related problematic behaviors. Overall, our study highlights the complexity of three problematic behaviors in cats.

SELECTION OF CITATIONS
SEARCH DETAIL
...