Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
World J Microbiol Biotechnol ; 40(6): 185, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683236

ABSTRACT

Stalk rot disease is a major constraint in maize production and till date reported to be caused by two to three species of phytopathogenic fungi but, in our present study, we disclose the first report of stalk rot is caused by complex species of phytopathogens, which belongs to five different genera. Therefore, to substantiate these findings, a total of 105 diseased samples of maize were collected from 21 different locations in six different geographical locations of India from which 48 isolates were used for the research study. Morphological features such as pigmentation, colony color, type of mycelium and pattern of mycelium was examined using macro and microscopic methods. A total of 11 different spp. of pathogens belonging to the five different genera: Fusarium verticillioides (56.25%), F. equiseti (14.5%), F. andiyazi (6.25%), F. solani (2.08%), F. proliferatum (2.08%), F. incarnatum (2.08%), Lasidioplodia theobrame (6.25%), Exserohilum rostrtum (4.16%), Nigrospora spp. (4.16%). and Schizophyllum commune (2.08%) were identified by different housekeeping genes (ITS, TEF-1α, RPB2 and Actin). Fusarium verticillioides, F. equiseti and F. andiyazi were major pathogens involved in stalk rot. This is the first report on F. proliferatum, F. solani, F. incarnatum, Lasidioplodia theobrame, Exserohilum rostrtum, Nigrospora spp. and Schizophyllum commune causing stalk rot of maize and their distribution in the different states of India. Studies on population dynamics of PFSR will enhance the understanding of pathogen behavior, virulence, or its association with different pathogens across India, which will facilitate the development of resistant maize genotypes against the PFSR.


Subject(s)
Fusarium , Phylogeny , Plant Diseases , Zea mays , Zea mays/microbiology , Plant Diseases/microbiology , India , Fusarium/genetics , Fusarium/classification , Fusarium/isolation & purification , Fusarium/pathogenicity , DNA, Fungal/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Fungi/pathogenicity , Genetic Variation
2.
Sci Rep ; 12(1): 20110, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418412

ABSTRACT

Fostering a culture of continuous improvement through regular monitoring of genetic trends in breeding pipelines is essential to improve efficiency and increase accountability. This is the first global study to estimate genetic trends across the International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding pipelines in eastern and southern Africa (ESA), South Asia, and Latin America over the past decade. Data from a total of 4152 advanced breeding trials and 34,813 entries, conducted at 1331 locations in 28 countries globally, were used for this study. Genetic trends for grain yield reached up to 138 kg ha-1 yr-1 in ESA, 118 kg ha-1 yr-1 South Asia and 143 kg ha-1 yr-1 in Latin America. Genetic trend was, in part, related to the extent of deployment of new breeding tools in each pipeline, strength of an extensive phenotyping network, and funding stability. Over the past decade, CIMMYT's breeding pipelines have significantly evolved, incorporating new tools/technologies to increase selection accuracy and intensity, while reducing cycle time. The first pipeline, Eastern Africa Product Profile 1a (EA-PP1a), to implement marker-assisted forward-breeding for resistance to key diseases, coupled with rapid-cycle genomic selection for drought, recorded a genetic trend of 2.46% per year highlighting the potential for deploying new tools/technologies to increase genetic gain.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Triticum , Droughts , Edible Grain/genetics
3.
J Genet ; 1012022.
Article in English | MEDLINE | ID: mdl-35975817

ABSTRACT

The reproductive stage in many crops, including maize, is very sensitive to heat stress and the genetic overlap between gametophytic and sporophytic phase gives an opportunity to select superior stress tolerant genotype at gametophytic stage. An attempt was made to evaluate the response of cyclic pollen selection in the F1 and F2 generations on the performance of F3 generation progenies for seed yield and yield contributing traits under natural heat stress conditions. In this direction three groups of F3 progenies, namely (i) pollen selection in F1 and F2 generations (GG), (ii) pollen selection only in F2 generation (CG), (iii) no pollen selection in F1 and F2 generations (CC) were screened for heat stress at Agricultural Research Station (ARS), Bheemarayanagudi. The GG progenies recorded significantly higher chlorophyll content, more number of pollen grains per anther and less pollen sterility compared to CG and CC group of progenies under heat stress. Further, the F4 progenies obtained through cyclic pollen selection (in F1, F2 and F3) were also tested for heat stress tolerance at seedling stage. The significant improvement for heat stress tolerance was recorded in F4 progenies derived through cyclic pollen selection as compared to control (no pollen selection for heat tolerance in any generation) F4 progenies. The results indicated that cyclic pollen selection in F1, F2 and F3 generations improved the heat stress tolerance of the progenies in the succeeding generations. To provide genetic evidence for the effect of pollen selection for heat tolerance, the control F2 (C) and selected F2 (G) populations were compared for the segregation of SSR markers. The selected F2 (G) population showed significant deviation from normal Mendelian ratio of 1:2:1 and showed skewness towards the alleles selected from male parent. The results provide strong evidence for an increase in the frequency of parental alleles in the progenies that impart heat stress tolerance.


Subject(s)
Thermotolerance , Zea mays , Genotype , Pollen/genetics , Seeds/genetics , Thermotolerance/genetics , Zea mays/genetics
4.
Front Plant Sci ; 12: 758119, 2021.
Article in English | MEDLINE | ID: mdl-34733308

ABSTRACT

Horsegram is a grain legume with excellent nutritional and remedial properties and good climate resilience, able to adapt to harsh environmental conditions. Here, we used a combination of short- and long-read sequencing technologies to generate a genome sequence of 279.12Mb, covering 83.53% of the estimated total size of the horsegram genome, and we annotated 24,521 genes. De novo prediction of DNA repeats showed that approximately 25.04% of the horsegram genome was made up of repetitive sequences, the lowest among the legume genomes sequenced so far. The major transcription factors identified in the horsegram genome were bHLH, ERF, C2H2, WRKY, NAC, MYB, and bZIP, suggesting that horsegram is resistant to drought. Interestingly, the genome is abundant in Bowman-Birk protease inhibitors (BBIs), which can be used as a functional food ingredient. The results of maximum likelihood phylogenetic and estimated synonymous substitution analyses suggested that horsegram is closely related to the common bean and diverged approximately 10.17 million years ago. The double-digested restriction associated DNA (ddRAD) sequencing of 40 germplasms allowed us to identify 3,942 high-quality SNPs in the horsegram genome. A genome-wide association study with powdery mildew identified 10 significant associations similar to the MLO and RPW8.2 genes. The reference genome and other genomic information presented in this study will be of great value to horsegram breeding programs. In addition, keeping the increasing demand for food with nutraceutical values in view, these genomic data provide opportunities to explore the possibility of horsegram for use as a source of food and nutraceuticals.

5.
J Genet ; 1002021.
Article in English | MEDLINE | ID: mdl-34706999

ABSTRACT

Compared to cereal crops several legumes are less characterized at the genomic level and rightly referred as orphan crops. Transfer of knowledge between model and crop legumes allows development of orthologous pan-taxon genomic tools to benefit research on resource poor taxa. Here, we developed 278 intron flanking gene-specific markers by BLAST aligning pigeonpea (Cajanus cajan (L.) Millsp.) expressed sequence tags (ESTs) with complete genome sequence of barrel medic (Medicago truncatula). A random 192 PCR primer pairs representing loci across the haploid genome (n = 8) of barrel medic were tested on a few important members of legume family. The single copy amplification rates of 31.8% (peanut, Arachis hypogaea) to 77.6% (barrel medic) signifies the success of cross taxon primers and suggested their potential use in comparative legume genomics. Genetic diversity was assessed in 48 pigeonpea genotypes using 143 intron flanking markers which revealed 71 polymorphic markers with PIC values ranging from 0.04 to 0.45 with an average of 0.23 per marker. The PCR products of different varieties of pigeonpea, cowpea and chickpea were sequenced and aligned to find putative SNPs. Integration of these newly developed markers into genetic maps in resource poor legumes will not only aid in the map saturation but also in designing successful marker-assisted selection programmes.


Subject(s)
Fabaceae/genetics , Genomics/methods , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Cajanus/genetics , Cicer/genetics , Crops, Agricultural/genetics , DNA Primers , Expressed Sequence Tags , Genetic Variation , Genome, Plant , Genotype , Genotyping Techniques/methods , Introns , Medicago truncatula/genetics , Phylogeny , Vigna/genetics
6.
J Genet ; 992020.
Article in English | MEDLINE | ID: mdl-33361635

ABSTRACT

Fusarium stalk rot disease (FSR) of maize caused by Fusarium verticillioides (Sacc.) Nirenberg is becoming an important biotic production constraint in many of the major maize growing areas causing substantial yield losses. Inbreds are preferred as parents in hybrid development owing to homozygous nature and high heterotic ability. Double haploid (DH) technology has emerged as a significant milestone. A total of 339 DH lines were generated from two inbred lines, VL1043 (susceptible) and CM212 (resistant), through in vivo haploid induction method. The 339 DH lines along with parents were phenotyped for their response to the FSR at the College of Agriculture, V. C. Farm, Mandya, India during summer, kharif and rabi seasons of the 2019-2020. Best linear unbiased predictors (BLUPs) were estimated for the FSR disease scores over three seasons. Awide range of BLUP scores of three to nine indicated the presence of higher variation for response of DH lines to FSR disease. The higher estimates of standardized range (1.31) and phenotypic coefficient of variation (19.80) also displayed higher variability. Nine lines were moderately resistant and 188 exhibited moderately susceptible reaction. The distribution of DH lines was positively skewed (1.34) and platykurtic (2.31) which suggested complementary epistasis and involvement of large number of genes in the disease expression.


Subject(s)
Haploidy , Plant Diseases/genetics , Zea mays/genetics , Disease Resistance/genetics , Fusarium/physiology , Genotype , Host-Pathogen Interactions , Inbreeding , India , Plant Breeding/methods , Plant Diseases/microbiology , Zea mays/classification , Zea mays/microbiology
7.
J Genet ; 97(5): e117-e137, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30574877

ABSTRACT

The expressed sequence tags (ESTs) of common bean were BLAST aligned with barred medic genome sequence and developed 1196 conserved intron spanning primers (CISPs) to facilitate genetic studies in legumes. Randomly selected 288 CISPs, representing loci on barrel medic genome, were tested on 10 selected members of legume family. On the source taxa, the highest single copy amplification success rates of 61.8% (barrel medic) and 56.2% (common bean) was obtained. The success rate of markers was 54.5% in cowpea followed by 53.5% in pigeonpea and chickpea, signifying cross taxon amplification and their potential use in comparative genomics. However, relatively low percentages of primer set amplified (40-43%) in soybean, urdbean and peanut. Further, these primers were tested on different varieties of chickpea, pigeonpea and cowpea. The PCR products were sequenced and aligned which resulted in detection of 26 SNPs and eight INDeLs in cowpea, seven SNPs and two INDeLs in chickpea and 27 SNPs and 14 INDeLs in pigeonpea. These SNPs were successfully converted in to size variation for gel-based genotyping. The CISP markers developed in this study are expected to aid in map saturation of legumes and in marker-assisted selection for accelerated crop improvement.


Subject(s)
Genomics/methods , Medicago truncatula/classification , Medicago truncatula/genetics , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Chromosome Mapping , Chromosomes, Plant , Medicago truncatula/growth & development
8.
Rice (N Y) ; 10(1): 41, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28861736

ABSTRACT

BACKGROUND: Rice (Oryza sativa L.) is the staple food for more than 3.5 billion people, mainly in Asia. Brown planthopper (BPH) is one of the most destructive insect pests of rice that limits rice production. Host-plant resistance is one of the most efficient ways to overcome BPH damage to the rice crop. RESULTS: BPH bioassay studies from 2009 to 2015 conducted in India and at the International Rice Research Institute (IRRI), Philippines, revealed that the cultivar CR2711-76 developed at the National Rice Research Institute (NRRI), Cuttack, India, showed stable and broad-spectrum resistance to several BPH populations of the Philippines and BPH biotype 4 of India. Genetic analysis and fine mapping confirmed the presence of a single dominant gene, BPH31, in CR2711-76 conferring BPH resistance. The BPH31 gene was located on the long arm of chromosome 3 within an interval of 475 kb between the markers PA26 and RM2334. Bioassay analysis of the BPH31 gene in CR2711-76 was carried out against BPH populations of the Philippines. The results from bioassay revealed that CR2711-76 possesses three different mechanisms of resistance: antibiosis, antixenosis, and tolerance. The effectiveness of flanking markers was tested in a segregating population and the InDel type markers PA26 and RM2334 showed high co-segregation with the resistance phenotype. Foreground and background analysis by tightly linked markers as well as using the Infinium 6 K SNP chip respectively were applied for transferring the BPH31 gene into an indica variety, Jaya. The improved BPH31-derived Jaya lines showed strong resistance to BPH biotypes of India and the Philippines. CONCLUSION: The new BPH31 gene can be used in BPH resistance breeding programs on the Indian subcontinent. The tightly linked DNA markers identified in the study have proved their effectiveness and can be utilized in BPH resistance breeding in rice.

9.
BMC Genomics ; 18(1): 465, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28619070

ABSTRACT

BACKGROUND: Finger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has high amount of calcium, methionine, tryptophan, fiber, and sulphur containing amino acids. In addition, it has C4 photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield. Therefore, development and utilization of genomic resources for genetic improvement of this crop is immensely useful. RESULTS: Experimental results from whole genome sequencing and assembling process of ML-365 finger millet cultivar yielded 1196 Mb covering approximately 82% of total estimated genome size. Genome analysis showed the presence of 85,243 genes and one half of the genome is repetitive in nature. The finger millet genome was found to have higher colinearity with foxtail millet and rice as compared to other Poaceae species. Mining of simple sequence repeats (SSRs) yielded abundance of SSRs within the finger millet genome. Functional annotation and mining of transcription factors revealed finger millet genome harbors large number of drought tolerance related genes. Transcriptome analysis of low moisture stress and non-stress samples revealed the identification of several drought-induced candidate genes, which could be used in drought tolerance breeding. CONCLUSIONS: This genome sequencing effort will strengthen plant breeders for allele discovery, genetic mapping, and identification of candidate genes for agronomically important traits. Availability of genomic resources of finger millet will enhance the novel breeding possibilities to address potential challenges of finger millet improvement.


Subject(s)
Droughts , Eleusine/genetics , Eleusine/physiology , Gene Expression Profiling , Genomics , Biological Transport/genetics , Calcium/metabolism , Disease Resistance/genetics , Eleusine/metabolism , Genes, Plant/genetics , Molecular Sequence Annotation , Photosynthesis/genetics , Phylogeny , Synteny , Transcription Factors/metabolism
10.
J Genet ; 94(4): 741-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26690530

ABSTRACT

Sorghum downy mildew caused by Peronosclerospora sorghi is a major disease of maize and resistance is under the control of polygenes which necessitated identification of quantitative-trait loci (QTLs) for initiating marker-assisted introgression of resistant QTLs in elite susceptible inbred lines. In the present study, QTLs for sorghum downy mildew (SDM) resistance in maize were identified based on cosegregation with linked simple sequence repeats in 185 F2 progeny from a cross between susceptible (CM500-19) and resistant (MAI105) parents. F3 families were screened in the National Sorghum Downy Mildew Screening Nursery during 2010 and 2011. High heritability was observed for the disease reaction. The final map generated using 87 SSR markers had 10 linkage groups, spanning a length of 1210.3 cM. Although, we used only 87 SSR markers for mapping, the per cent of genome within 20 cM to the nearest marker was 88.5. Three putative QTLs for SDM resistance were located on chromosomes 3 (bin 3.01), 6 (bin 6.01) and 2 (bin 2.02) using composite interval mapping. The locus on chromosome 3 had a major effect and explained up to 12.6% of the phenotypic variation. The other two QTLs on chromosomes 6 and 2 had minor effects with phenotypic variation of 7.1 and 2%. The three QTLs appeared to have additive effects on resistance. The QTLs on chromosomes 3 and 6 were successfully used in the marker-assisted selection programme for introgression of resistance to SDM in eight susceptible maize lines.


Subject(s)
Disease Resistance/genetics , Oomycetes/genetics , Plant Diseases/genetics , Quantitative Trait Loci/genetics , Sorghum/genetics , Zea mays/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Edible Grain/genetics , Genetic Markers/genetics , Microsatellite Repeats/genetics , Phenotype
11.
Theor Appl Genet ; 115(2): 237-43, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17522835

ABSTRACT

Common genome anchor points across many taxa greatly facilitate translational and comparative genomics and will improve our understanding of the Tree of Life. To add to the repertoire of genomic tools applicable to the study of monocotyledonous plants in general, we aligned Allium and Musa ESTs to Oryza BAC sequences and identified candidate Allium-Oryza and Musa-Oryza conserved intron-scanning primers (CISPs). A random sampling of 96 CISP primer pairs, representing loci from 11 of the 12 chromosomes in rice, were tested on seven members of the order Poales and on representatives of the Arecales, Asparagales, and Zingiberales monocot orders. The single-copy amplification success rates of Allium (31.3%), Cynodon (31.4%), Hordeum (30.2%), Musa (37.5%), Oryza (61.5%), Pennisetum (33.3%), Sorghum (47.9%), Zea (33.3%), Triticum (30.2%), and representatives of the palm family (32.3%) suggest that subsets of these primers will provide DNA markers suitable for comparative and translational genomics in orphan crops, as well as for applications in conservation biology, ecology, invasion biology, population biology, systematic biology, and related fields.


Subject(s)
Genome, Plant , Oryza/genetics , Allium/classification , Allium/genetics , Base Composition , Base Sequence , Chromosomes, Plant , Expressed Sequence Tags , Genomics , Musa/classification , Musa/genetics , Oryza/classification , Phylogeny , Polymerase Chain Reaction , Polymorphism, Genetic , Sequence Alignment , Sequence Analysis, DNA
12.
Plant Physiol ; 140(4): 1183-91, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16607031

ABSTRACT

Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.


Subject(s)
Crops, Agricultural/genetics , Genomics/methods , Introns , Poaceae/genetics , Polymorphism, Single Nucleotide , Base Sequence , Chromosomes, Plant/genetics , Conserved Sequence , Expressed Sequence Tags , Genotype , Molecular Sequence Data , Sequence Alignment , Untranslated Regions
SELECTION OF CITATIONS
SEARCH DETAIL
...