Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Cells ; 12(17)2023 09 04.
Article in English | MEDLINE | ID: mdl-37681937

ABSTRACT

BACKGROUND: Fibrosis limits the success of filtering glaucoma surgery. We employed 2D and 3D in vitro models to assess the effects of fluid flow on human tenon fibroblasts (HTF). METHODS: HTF were exposed to continuous or pulsatile fluid flow for 48 or 72 h, at rates expected at the transscleral outflow site after filtering surgery. In the 2D model, the F-actin cytoskeleton and fibronectin 1 (FN1) were visualized by confocal immunofluorescence microscopy. In the 3D model, mRNA and whole cell lysates were extracted to analyze the expression of fibrosis-associated genes by qPCR and Western blot. The effects of a small-molecule inhibitor of the TGF-ß receptor ALK5 were studied. RESULTS: Slow, continuous fluid flow induced fibrotic responses in the 2D and 3D models. It elicited changes in cell shape, the F-actin cytoskeleton, the deposition of FN1 and activated the intracellular TGF-ß signaling pathway to induce expression of fibrosis-related genes, such as CTGF, FN1 and COL1A1. ALK5-inhibition reduced this effect. Intermittent fluid flow also induced fibrotic changes, which decreased with increasing pause duration. CONCLUSIONS: Slow interstitial fluid flow is sufficient to induce fibrosis, could underlie the intractable nature of fibrosis following filtering glaucoma surgery and might be a target for antifibrotic therapy.


Subject(s)
Extracellular Fluid , Glaucoma , Humans , Actin Cytoskeleton , Cytoskeleton , Actins
2.
Klin Monbl Augenheilkd ; 240(6): 774-778, 2023 Jun.
Article in German | MEDLINE | ID: mdl-37146635

ABSTRACT

BACKGROUND: Keratoconus is associated with an impairment in corneal biomechanics. Using nanoindentation, spatially resolved measurement of biomechanical properties can be performed on corneal tissue. The aim of this study is to assess the biomechanical properties of corneas with keratoconus in comparison to healthy controls. METHODS: 17 corneas with keratoconus and 10 healthy corneas unsuitable for transplantation were included in the study. After explantation, corneas were kept in culture medium containing 15% dextran for at least 24 h. Nanoindentation was then performed to a depth of 25 µm at a force increase of 300 µN/min. RESULTS: A total of 2328 individual indentations were performed for this study. In the keratoconus group; the mean modulus of elasticity was 23.2 kPa (± 15.0 kPa) for a total of 1802 indentations. In the control group, the mean modulus of elasticity was 48.7 kPa (± 20.5 kPa) with a total of 526 indentations. The Wilcoxon test showed that the differences were statistically significant. CONCLUSION: Using nanoindentation, a significantly lower elastic modulus was found in corneas with keratoconus compared to corneas without keratoconus. Further studies are needed to gain a better understanding of how keratoconus affects corneal biomechanics.


Subject(s)
Keratoconus , Humans , Biomechanical Phenomena , Cornea , Elasticity , Elastic Modulus
SELECTION OF CITATIONS
SEARCH DETAIL
...