Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 3(1): 223-33, 2009 Jan 27.
Article in English | MEDLINE | ID: mdl-19206270

ABSTRACT

In the present study, we demonstrate the conversion of a single human topoisomerase I mediated DNA cleavage-ligation event happening within nanometer dimensions to a micrometer-sized DNA molecule, readily detectable using standard fluorescence microscopy. This conversion is achieved by topoisomerase I mediated closure of a nicked DNA dumbbell structure, followed by rolling circle amplification. The resulting product consists of multiple tandem repeats of the DNA dumbbell and can subsequently be visualized by annealing to fluorescently labeled probes. Since amplification involves no thermal cycling, each fluorescent rolling circle product, which gives rise to an individual signal upon microscopic analysis, will correspond to a single human topoisomerase I mediated cleavage-ligation event. Regarding sensitivity, speed, and ease of performance, the presented activity assay based on single-molecule product detection is superior to current state of the art assays using supercoiled plasmids or radiolabeled oligonucleotides as the substrate for topoisomerase I activity. Moreover, inherent in the experimental design is the easy adaptation to multiplexed and/or high-throughput systems. Human topoisomerase I is the cellular target of clinically important anticancer drugs, and the effect of such drugs corresponds directly to the intracellular topoisomerase I cleavage-ligation activity level. We therefore believe that the presented setup, measuring directly the number of cleavage-ligation events in a given sample, has great diagnostic potential, adding considerably to the possibilities of accurate prognosis before treatment with topoisomerase I directed chemotherapeutics.


Subject(s)
DNA Topoisomerases, Type I/analysis , DNA/chemistry , Antineoplastic Agents/pharmacology , DNA Primers/chemistry , DNA Topoisomerases, Type I/chemistry , Humans , Microfluidics , Microscopy, Fluorescence/methods , Models, Chemical , Nucleic Acid Hybridization , Oligonucleotides/chemistry , Phosphorylation , Recombinant Proteins/chemistry , Sensitivity and Specificity
2.
BMC Mol Biol ; 8: 103, 2007 Nov 13.
Article in English | MEDLINE | ID: mdl-17997865

ABSTRACT

BACKGROUND: In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature. METHODS: Synchronized cultured cells were fixed with methanol/acetic acid to prepare chromosome spreads in teflon-coated diagnostic well-slides. Apart from the slide format and the chromosome spreading everything was done essentially according to standard protocols. Hybridization targets were detected in situ with padlock probes, which were ligated and amplified using target primed rolling circle DNA synthesis, and detected by fluorescence labeling. RESULTS: An optimized protocol for the spreading of condensed metaphase chromosomes in teflon-coated diagnostic well-slides was developed. Applying this protocol we generated specimens for target primed rolling circle DNA synthesis of padlock probes recognizing a 40 nucleotide sequence in the male specific repetitive satellite I sequence (DYZ1) on the Y-chromosome and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a) gene positioned on the long arm of chromosome 6. These targets were detected with good efficiency, but the efficiency on other target sites was unsatisfactory. CONCLUSION: Our aim was to test the applicability of the method used on mitochondrial DNA to the analysis of nuclear genomes, in particular as represented by metaphase spreads. An optimized protocol for chromosome spreading in diagnostic well-slides was used for the detection of circularized padlock probes amplified by target primed rolling circle DNA synthesis from condensed metaphase chromosomes. We were able to detect a 40 nucleotide sequence in the male specific repetitive satellite I sequence and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a) gene. Our overall conclusion is that whilst this type of reaction indeed can be brought to work on nuclear genomes, including metaphase chromosomes, the total efficiency of this multistep reaction is at present relatively low (1-10% of target sites picked up), meaning that it is best suited for the detection of targets that exist in multiple copies per cell. Changing this will require substantial efforts to systematically increase the efficiency in each step.


Subject(s)
DNA Probes/genetics , DNA, Circular/genetics , Metaphase/genetics , Molecular Probe Techniques , Nucleic Acid Amplification Techniques/methods , Sequence Analysis, DNA/methods , Cell Nucleus/metabolism , Chromosomes/chemistry , Chromosomes/genetics , DNA Probes/chemistry , DNA, Circular/analysis , Humans , In Situ Hybridization, Fluorescence/methods , Lymphocytes/metabolism , Male , Primed In Situ Labeling/methods , Repetitive Sequences, Nucleic Acid
3.
BMC Biotechnol ; 7: 69, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17945012

ABSTRACT

BACKGROUND: In situ detection is traditionally performed with long labeled probes often followed by a signal amplification step to enhance the labeling. Whilst short probes have several advantages over long probes (e.g. higher resolution and specificity) they carry fewer labels per molecule and therefore require higher amplification for detection. Furthermore, short probes relying only on hybridization for specificity can result in non-specific signals appearing anywhere the probe attaches to the target specimen. One way to obtain high amplification whilst minimizing the risk of false positivity is to use small circular probes (e.g. Padlock Probes) in combination with target primed rolling circle DNA synthesis. This has previously been used for DNA detection in situ, but not until now for RNA targets. RESULTS: We present here a proof of principle investigation of a novel rolling circle technology for the detection of non-polyadenylated RNA molecules in situ, including a new probe format (the Turtle Probe) and optimized procedures for its use on formalin fixed paraffin embedded tissue sections and in solid support format applications. CONCLUSION: The method presented combines the high discriminatory power of short oligonucleotide probes with the impressive amplification power and selectivity of the rolling circle reaction, providing excellent signal to noise ratios in combination with exact target localization due to the target primed reaction. Furthermore, the procedure is easily multiplexed, allowing visualization of several different RNAs.


Subject(s)
Molecular Probe Techniques , Oligonucleotide Probes/genetics , Primed In Situ Labeling/methods , RNA/analysis , Formaldehyde , HeLa Cells , Humans , Paraffin Embedding , RNA/genetics , RNA, Ribosomal, 28S/analysis , RNA, Ribosomal, 28S/genetics , RNA, Ribosomal, 5S/analysis , RNA, Ribosomal, 5S/genetics , Reproducibility of Results , Tissue Fixation
4.
BMC Biotechnol ; 7: 49, 2007 Aug 16.
Article in English | MEDLINE | ID: mdl-17705815

ABSTRACT

BACKGROUND: The quality of chemically synthesized oligonucleotides falls with the length of the oligonucleotide, not least due to depurinations and premature termination during production. This limits the use of long oligonucleotides in assays where long high-quality oligonucleotides are needed (e.g. padlock probes). Another problem with chemically synthesized oligonucleotides is that secondary structures contained within an oligonucleotide reduce the efficiency of HPLC and/or PAGE purification. Additionally, ligation of chemically synthesized oligonucleotides is less efficient than the ligation of enzymatically produced DNA molecules. RESULTS: Chemically synthesized oligonucleotides with hairpin structures were acquired from our standard supplier. The stem of the hairpin contained recognition sequences for the Nt. Alw I nicking enzyme and the Mly I restriction enzyme. These double stranded regions were positioned in a way to allow self-templated circularization of the oligonucleotide. Following ligation, tandem repeats of the complementary sequence of the circular oligonucleotide could be produced through rolling circle DNA synthesis. By running successive rounds of ligation, rolling circle DNA synthesis, and nicking, the original oligonucleotide could be amplified as either the (+)-strand or the (-)-strand. Alternatively, the hairpin structure could be removed by cleavage with the Mly I restriction enzyme, thereby releasing the oligonucleotide sequence contained within the hairpin structure from the hairpin. CONCLUSION: We present here a method for the enzymatic production through DNA amplification of oligonucleotides with freely designable 5'-ends and 3'-ends, using hairpin-containing self-templating oligonucleotides. The hairpin comprises recognition sequences for a nicking enzyme and a restriction enzyme. The oligonucleotides are amplified by successive rounds of ligation, rolling circle DNA synthesis and nicking. Furthermore, the hairpin can be removed by cleavage with the Mly I restriction enzyme. We have named such hairpin structures "suicide cassettes".


Subject(s)
DNA Restriction Enzymes/metabolism , DNA, Circular/genetics , Mutagenesis, Insertional/methods , Nucleic Acid Amplification Techniques/methods , Oligonucleotides/genetics , Genes, Transgenic, Suicide/genetics , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...