Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 5356, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844055

ABSTRACT

The climate and environmental significance of the Deccan Traps large igneous province of west-central India has been the subject of debate in paleontological communities. Nearly one million years of semi-continuous Deccan eruptive activity spanned the Cretaceous-Paleogene boundary, which is renowned for the extinction of most dinosaur groups. Whereas the Chicxulub impactor is acknowledged as the principal cause of these extinctions, the Deccan Traps eruptions are believed to have contributed to extinction patterns and/or enhanced ecological pressures on biota during this interval of geologic time. We present the first coupled records of biogenic carbonate clumped isotope paleothermometry and mercury concentrations as measured from a broad geographic distribution of marine mollusk fossils. These fossils preserve evidence of simultaneous increases in coastal marine temperatures and mercury concentrations at a global scale, which appear attributable to volcanic CO2 and mercury emissions. These early findings warrant further investigation with additional records of combined Late Cretaceous temperatures and mercury concentrations of biogenic carbonate.

2.
Nat Commun ; 7: 12079, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27377632

ABSTRACT

The cause of the end-Cretaceous (KPg) mass extinction is still debated due to difficulty separating the influences of two closely timed potential causal events: eruption of the Deccan Traps volcanic province and impact of the Chicxulub meteorite. Here we combine published extinction patterns with a new clumped isotope temperature record from a hiatus-free, expanded KPg boundary section from Seymour Island, Antarctica. We document a 7.8±3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. Local warming may have been amplified due to simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change.

3.
Rapid Commun Mass Spectrom ; 30(1): 199-208, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26661987

ABSTRACT

RATIONALE: The clumped isotope paleothermometer, a new proxy widely applicable in studies of paleoclimate, tectonics, and paleontology, relates the abundance of doubly substituted isotopologues of carbonate-derived CO2 to the temperature of formation of the carbonate phase. As this technique becomes more widely used, more is discovered about the effects of everyday laboratory procedures on the clumped isotopic composition of CO2 gas. METHODS: Preparation of CO2 for clumped isotope analysis requires the removal of isobaric contaminants prior to measurement, achieved dynamically by passing the CO2 through a gas chromatography column using a helium carrier gas or cryogenically pumping CO2 through a static trap filled with Porapak™ Q (PPQ) material. The stable and clumped isotopic compositions of carbonate standards prepared at PPQ trap temperatures between -40°C and -10°C were measured by isotope ratio mass spectrometry to evaluate potential artifacts introduced by the static PPQ trap method. RESULTS: The stable isotopic composition of carbonates run at temperatures below -20°C was fractionated, despite achieving >99% retrieval of gas at temperatures as cold as -30°C. The δ(13)C and δ(18)O values decreased by ~0.01 and ~0.03 ‰/(°C below -20°C). The raw Δ47 values decreased by 0.003-0.005 ‰/(°C below -20°C), but the final reference-frame-corrected values (Δ47-RFAC ) were unaffected as long as the carbonate samples and standard gases were prepared identically. CONCLUSIONS: Preparing carbonate samples for clumped isotope analysis using a PPQ trap that is too cold can result in erroneous stable isotopic compositions. New and existing labs using the static PPQ trap cleaning procedure should determine the ideal PPQ trap temperature for their particular system through monitoring not only yield through the PPQ trap, but also stable isotopic composition at various PPQ trap temperatures.


Subject(s)
Carbon Isotopes/analysis , Mass Spectrometry/methods , Oxygen Isotopes/analysis , Artifacts , Cold Temperature , Mass Spectrometry/instrumentation , Mass Spectrometry/standards
4.
Rapid Commun Mass Spectrom ; 29(9): 901-9, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26377019

ABSTRACT

RATIONALE: Mass-47 CO(2) clumped isotope thermometry requires relatively large (~20 mg) samples of carbonate minerals due to detection limits and shot noise in gas source isotope ratio mass spectrometry (IRMS). However, it is unreasonable to assume that natural geologic materials are homogenous on the scale required for sampling. We show that sample heterogeneities can cause offsets from equilibrium Δ(47) values that are controlled solely by end member mixing and are independent of equilibrium temperatures. METHODS: A numerical model was built to simulate and quantify the effects of end member mixing on Δ(47). The model was run in multiple possible configurations to produce a dataset of mixing effects. We verified that the model accurately simulated real phenomena by comparing two artificial laboratory mixtures measured using IRMS to model output. RESULTS: Mixing effects were found to be dependent on end member isotopic composition in δ(13)C and δ(18)O values, and independent of end member Δ(47) values. Both positive and negative offsets from equilibrium Δ(47) can occur, and the sign is dependent on the interaction between end member isotopic compositions. The overall magnitude of mixing offsets is controlled by the amount of variability within a sample; the larger the disparity between end member compositions, the larger the mixing offset. CONCLUSIONS: Samples varying by less than 2 ‰ in both δ(13)C and δ(18)O values have mixing offsets below current IRMS detection limits. We recommend the use of isotopic subsampling for δ(13)C and δ(18)O values to determine sample heterogeneity, and to evaluate any potential mixing effects in samples suspected of being heterogonous.

5.
Proc Natl Acad Sci U S A ; 110(19): 7562-7, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23610424

ABSTRACT

Geochemical and modeling studies suggest that the transition from the "greenhouse" state of the Late Eocene to the "icehouse" conditions of the Oligocene 34-33.5 Ma was triggered by a reduction of atmospheric pCO2 that enabled the rapid buildup of a permanent ice sheet on the Antarctic continent. Marine records show that the drop in pCO2 during this interval was accompanied by a significant decline in high-latitude sea surface and deep ocean temperature and enhanced seasonality in middle and high latitudes. However, terrestrial records of this climate transition show heterogeneous responses to changing pCO2 and ocean temperatures, with some records showing a significant time lag in the temperature response to declining pCO2. We measured the Δ47 of aragonite shells of the freshwater gastropod Viviparus lentus from the Solent Group, Hampshire Basin, United Kingdom, to reconstruct terrestrial temperature and hydrologic change in the North Atlantic region during the Eocene-Oligocene transition. Our data show a decrease in growing-season surface water temperatures (~10 °C) during the Eocene-Oligocene transition, corresponding to an average decrease in mean annual air temperature of ~4-6 °C from the Late Eocene to Early Oligocene. The magnitude of cooling is similar to observed decreases in North Atlantic sea surface temperature over this interval and occurs during major glacial expansion. This suggests a close linkage between atmospheric carbon dioxide concentrations, Northern Hemisphere temperature, and expansion of the Antarctic ice sheets.


Subject(s)
Climate Change , Climate , Gastropoda/physiology , Animals , Antarctic Regions , Atmosphere , Carbon Dioxide/chemistry , Europe , Fossils , Geology/methods , Ice , Models, Theoretical , Paleontology/methods , Temperature , United Kingdom , Water/chemistry
6.
Proc Natl Acad Sci U S A ; 109(3): 728-32, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22207626

ABSTRACT

An asteroid impact at the end of the Cretaceous caused mass extinction, but extinction mechanisms are not well-understood. The collapse of sea surface to sea floor carbon isotope gradients has been interpreted as reflecting a global collapse of primary productivity (Strangelove Ocean) or export productivity (Living Ocean), which caused mass extinction higher in the marine food chain. Phytoplankton-dependent benthic foraminifera on the deep-sea floor, however, did not suffer significant extinction, suggesting that export productivity persisted at a level sufficient to support their populations. We compare benthic foraminiferal records with benthic and bulk stable carbon isotope records from the Pacific, Southeast Atlantic, and Southern Oceans. We conclude that end-Cretaceous decrease in export productivity was moderate, regional, and insufficient to explain marine mass extinction. A transient episode of surface ocean acidification may have been the main cause of extinction of calcifying plankton and ammonites, and recovery of productivity may have been as fast in the oceans as on land.


Subject(s)
Aquatic Organisms/growth & development , Extinction, Biological , Biodiversity , Carbon Isotopes , Foraminifera/growth & development , Geography , Time Factors
7.
Nature ; 467(7318): 955-8, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20962843

ABSTRACT

Marine and continental records show an abrupt negative shift in carbon isotope values at ∼55.8 Myr ago. This carbon isotope excursion (CIE) is consistent with the release of a massive amount of isotopically light carbon into the atmosphere and was associated with a dramatic rise in global temperatures termed the Palaeocene-Eocene thermal maximum (PETM). Greenhouse gases released during the CIE, probably including methane, have often been considered the main cause of PETM warming. However, some evidence from the marine record suggests that warming directly preceded the CIE, raising the possibility that the CIE and PETM may have been linked to earlier warming with different origins. Yet pre-CIE warming is still uncertain. Disentangling the sequence of events before and during the CIE and PETM is important for understanding the causes of, and Earth system responses to, abrupt climate change. Here we show that continental warming of about 5 °C preceded the CIE in the Bighorn Basin, Wyoming. Our evidence, based on oxygen isotopes in mammal teeth (which reflect temperature-sensitive fractionation processes) and other proxies, reveals a marked temperature increase directly below the CIE, and again in the CIE. Pre-CIE warming is also supported by a negative amplification of δ(13)C values in soil carbonates below the CIE. Our results suggest that at least two sources of warming-the earlier of which is unlikely to have been methane-contributed to the PETM.


Subject(s)
Global Warming/statistics & numerical data , Temperature , Animals , Aquatic Organisms/chemistry , Atmosphere/chemistry , Carbon Isotopes , Climate , Dental Enamel/chemistry , Ferric Compounds/chemistry , History, Ancient , Humidity , Mammals , Methane/analysis , Oxygen Isotopes , Soil/chemistry , Tooth/chemistry , Wyoming
SELECTION OF CITATIONS
SEARCH DETAIL
...