Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Res ; 13(3): 5601-5, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25117317

ABSTRACT

Tabebuia cassinoides (Lam.) DC., popularly known as caxeta, is a tree species that belongs to the plant family Bignoniaceae. This species is endemic to the Brazilian Atlantic Forest and is widely exploited commercially. To date, little is known about its genetic structure, preventing the establishment of adequate management plans for this taxon. The objective of this study was to construct a microsatellite-enriched genomic library for T. cassinoides to select polymorphic loci, and standardize polymerase chain reaction amplification conditions. Of the 15 loci examined, 5 were polymorphic. The number of alleles per locus ranged from 2 to 8, with a mean of 4.4. The microsatellite loci described here represent the basis for detailed population genetic studies of this species, which will greatly contribute for the development of better conservation strategies for this taxon.


Subject(s)
Genetic Loci , Microsatellite Repeats , Tabebuia/genetics , Alleles , DNA, Plant , Genotype , Molecular Sequence Data , Polymorphism, Genetic
2.
J Evol Biol ; 26(10): 2283-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23944658

ABSTRACT

Phenotypic integration is essential to the understanding of organismal evolution as a whole. In this study, a phylogenetic framework is used to assess phenotypic integration among the floral parts of a group of Neotropical lianas. Flowers consist of plant reproductive organs (carpels and stamens), usually surrounded by attractive whorls (petals and sepals). Thus, flower parts might be involved in different functions and developmental constraints, leading to conflicting selective forces. We found that Bignonieae flowers have very similar patterns of variance/covariance among traits and that such patterns are uncorrelated with the phylogenetic relationships between species. However, in spite of pattern stasis, our results also indicate that diversification of floral morphology in this group has occurred throughout the evolution of magnitudes of correlation among traits. Thus, we suggest that stabilizing selection has played an important role in phenotypic integration, resulting in the long-term stasis of covariance patterns underlying flower diversification during the ca. 50 Myr of evolution of Bignonieae. This is the first report of long-term stasis in the phenotypic integration of angiosperms, suggesting that patterns of floral morphology can be recognizable as specific attributes of distinct botanical families.


Subject(s)
Bignoniaceae/anatomy & histology , Phylogeny , Bignoniaceae/classification , Flowers/anatomy & histology , Flowers/classification , Phenotype , Selection, Genetic
3.
J Evol Biol ; 25(11): 2325-40, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23013544

ABSTRACT

Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for ant-plant-herbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade-offs with new trichomes) that may have affected the evolution of ant-plant associations. We measured seven EFN quantitative traits in all 105 species included in a well-supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on ant-EFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K-values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static-optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade-off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K-values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group.


Subject(s)
Adaptation, Physiological , Biological Evolution , Plant Leaves/physiology , Plant Nectar/physiology , Trees/physiology , Animals , Ants/physiology , Bignoniaceae/classification , Bignoniaceae/physiology , Ecosystem , Herbivory , Likelihood Functions , Phylogeny , Population Density , Selection, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...