Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 7(71): eabn5859, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35622903

ABSTRACT

Antitumor T cell responses are the primary mediators of cancer immunotherapy. However, many other components of the immune system are needed for efficient T cell responses to be generated. Here, we developed a combinatorial approach where a Toll-like receptor 9 agonist (CpG) and Fc-fused IL-12 protein were injected together into just one of several tumor sites in a mouse. This combination led to body-wide (abscopal) therapeutic responses in multiple cancer models. These systemic responses were dependent not only on T cells but also on B cells. B cells were activated by the treatment and were required for optimal T cell activation. This cross-talk was dependent on MHC and was tumor antigen specific. The addition of an agonistic antibody against OX40 further enhanced T cell activation and therapeutic responses. Our data suggest that the combination of CpG, anti-OX40, and IL-12Fc may have success in patients with cancer and that B and T cell collaboration is crucial for the efficacy of this combination immunotherapy.


Subject(s)
Neoplasms , T-Lymphocytes , Adjuvants, Immunologic , Animals , Antibodies , Humans , Immunotherapy , Mice , Neoplasms/therapy
2.
Blood Cancer Discov ; 3(2): 95-102, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35015688

ABSTRACT

To obtain a deeper understanding of poor responses to COVID-19 vaccination in patients with lymphoma, we assessed blocking antibodies, total anti-spike IgG, and spike-specific memory B cells in the peripheral blood of 126 patients with lymphoma and 20 age-matched healthy controls 1 and 4 months after COVID-19 vaccination. Fifty-five percent of patients developed blocking antibodies postvaccination, compared with 100% of controls. When evaluating patients last treated from days to nearly 18 years prior to vaccination, time since last anti-CD20 was a significant independent predictor of vaccine response. None of 31 patients who had received anti-CD20 treatment within 6 months prior to vaccination developed blocking antibodies. In contrast, patients who initiated anti-CD20 treatment shortly after achieving a vaccine-induced antibody response tended to retain that response during treatment, suggesting a policy of immunizing prior to treatment whenever possible. SIGNIFICANCE: In a large cohort of patients with B-cell lymphoma, time since anti-CD20 treatment was an independent predictor of neutralizing antibody response to COVID-19 vaccination. Comparing patients who received anti-CD20 treatment before or after vaccination, we demonstrate that vaccinating first can generate an antibody response that endures through anti-CD20-containing treatment. This article is highlighted in the In This Issue feature, p. 85.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibody Formation , COVID-19 Vaccines/therapeutic use , Humans , Infant , SARS-CoV-2 , Vaccination
3.
ACS Cent Sci ; 7(7): 1191-1204, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34341771

ABSTRACT

The SARS-CoV-2 pandemic has necessitated the rapid development of prophylactic vaccines. Two mRNA vaccines have been approved for emergency use by the FDA and have demonstrated extraordinary effectiveness. The success of these mRNA vaccines establishes the speed of development and therapeutic potential of mRNA. These authorized vaccines encode full-length versions of the SARS-CoV-2 spike protein. They are formulated with lipid nanoparticle (LNP) delivery vehicles that have inherent immunostimulatory properties. Different vaccination strategies and alternative mRNA delivery vehicles would be desirable to ensure flexibility of future generations of SARS-CoV-2 vaccines and the development of mRNA vaccines in general. Here, we report on the development of an alternative mRNA vaccine approach using a delivery vehicle called charge-altering releasable transporters (CARTs). Using these inherently nonimmunogenic vehicles, we can tailor the vaccine immunogenicity by inclusion of coformulated adjuvants such as oligodeoxynucleotides with CpG motifs (CpG-ODN). Mice vaccinated with the mRNA-CART vaccine developed therapeutically relevant levels of receptor binding domain (RBD)-specific neutralizing antibodies in both the circulation and in the lung bronchial fluids. In addition, vaccination elicited strong and long-lasting RBD-specific TH1 T cell responses including CD4+ and CD8+ T cell memory.

4.
bioRxiv ; 2021 May 25.
Article in English | MEDLINE | ID: mdl-33880472

ABSTRACT

The SARS-CoV-2 pandemic has necessitated the rapid development of prophylactic vaccines. Two mRNA vaccines have been approved for emergency use by the FDA and have demonstrated extraordinary effectiveness. The success of these mRNA vaccines establishes the speed of development and therapeutic potential of mRNA. These authorized vaccines encode full-length versions of the SARS-CoV-2 spike protein. They are formulated with Lipid Nanoparticle (LNP) delivery vehicles that have inherent immunostimulatory properties. Different vaccination strategies and alternative mRNA delivery vehicles would be desirable to ensure flexibility of future generations of SARS-CoV-2 vaccines and the development of mRNA vaccines in general. Here, we report on the development of an alternative mRNA vaccine approach using a delivery vehicle called Charge-Altering Releasable Transporters (CARTs). Using these inherently nonimmunogenic vehicles we can tailor the vaccine immunogenicity by inclusion of co-formulated adjuvants such as oligodeoxynucleotides with CpG motifs (CpG-ODN). Mice vaccinated with the mRNA-CART vaccine developed therapeutically relevant levels of RBD-specific neutralizing antibodies in both the circulation and in the lung bronchial fluids. In addition, vaccination elicited strong and long lasting RBD-specific T H 1 T cell responses including CD4 + and CD8 + T cell memory.

SELECTION OF CITATIONS
SEARCH DETAIL
...