Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mov Ecol ; 10(1): 30, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35843990

ABSTRACT

BACKGROUND: Bio-logging and animal tracking datasets continuously grow in volume and complexity, documenting animal behaviour and ecology in unprecedented extent and detail, but greatly increasing the challenge of extracting knowledge from the data obtained. A large variety of analysis methods are being developed, many of which in effect are inaccessible to potential users, because they remain unpublished, depend on proprietary software or require significant coding skills. RESULTS: We developed MoveApps, an open analysis platform for animal tracking data, to make sophisticated analytical tools accessible to a global community of movement ecologists and wildlife managers. As part of the Movebank ecosystem, MoveApps allows users to design and share workflows composed of analysis modules (Apps) that access and analyse tracking data. Users browse Apps, build workflows, customise parameters, execute analyses and access results through an intuitive web-based interface. Apps, coded in R or other programming languages, have been developed by the MoveApps team and can be contributed by anyone developing analysis code. They become available to all user of the platform. To allow long-term and cross-system reproducibility, Apps have public source code and are compiled and run in Docker containers that form the basis of a serverless cloud computing system. To support reproducible science and help contributors document and benefit from their efforts, workflows of Apps can be shared, published and archived with DOIs in the Movebank Data Repository. The platform was beta launched in spring 2021 and currently contains 49 Apps that are used by 316 registered users. We illustrate its use through two workflows that (1) provide a daily report on active tag deployments and (2) segment and map migratory movements. CONCLUSIONS: The MoveApps platform is meant to empower the community to supply, exchange and use analysis code in an intuitive environment that allows fast and traceable results and feedback. By bringing together analytical experts developing movement analysis methods and code with those in need of tools to explore, answer questions and inform decisions based on data they collect, we intend to increase the pace of knowledge generation and integration to match the huge growth rate in bio-logging data acquisition.

2.
Ecol Evol ; 10(20): 11752-11765, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33144998

ABSTRACT

Females must balance physiological and behavioral demands of producing offspring with associated expenditures, such as resource acquisition and predator avoidance. Nest success is an important parameter underlying avian population dynamics. Galliforms are particularly susceptible to low nest success due to exposure of ground nests to multiple predator guilds, lengthy incubation periods, and substantive reliance on crypsis for survival. Hence, it is plausible that nesting individuals prioritize productivity and survival differently, resulting in a gradient of reproductive strategies. Fine-scale movement patterns during incubation are not well documented in ground-nesting birds, and the influence of reproductive movements on survival is largely unknown. Using GPS data collected from female wild turkeys (n = 278) across the southeastern United States, we evaluated the influence of incubation recess behaviors on trade-offs between nest and female survival. We quantified daily recess behaviors including recess duration, recess frequency, total distance traveled, and incubation range size for each nest attempt as well as covariates for nest concealment, nest attempt, and nest age. Of 374 nests, 91 (24%) hatched and 39 (14%) females were depredated during incubation. Average nest survival during the incubation period was 0.19, whereas average female survival was 0.78. On average, females took 1.6 daily unique recesses (SD = 1.2), spent 2.1 hr off the nest each day (SD = 1.8), and traveled 357.6 m during recesses (SD = 396.6). Average nest concealment was 92.5 cm (SD = 47). We found that females who took longer recess bouts had higher individual survival, but had increased nest loss. Females who recessed more frequently had lower individual survival. Our findings suggest behavioral decisions made during incubation represent life-history trade-offs between predation risk and reproductive success on an unpredictable landscape.

SELECTION OF CITATIONS
SEARCH DETAIL
...