Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 177, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997558

ABSTRACT

We present GazeBaseVR, a large-scale, longitudinal, binocular eye-tracking (ET) dataset collected at 250 Hz with an ET-enabled virtual-reality (VR) headset. GazeBaseVR comprises 5,020 binocular recordings from a diverse population of 407 college-aged participants. Participants were recorded up to six times each over a 26-month period, each time performing a series of five different ET tasks: (1) a vergence task, (2) a horizontal smooth pursuit task, (3) a video-viewing task, (4) a self-paced reading task, and (5) a random oblique saccade task. Many of these participants have also been recorded for two previously published datasets with different ET devices, and 11 participants were recorded before and after COVID-19 infection and recovery. GazeBaseVR is suitable for a wide range of research on ET data in VR devices, especially eye movement biometrics due to its large population and longitudinal nature. In addition to ET data, additional participant details are provided to enable further research on topics such as fairness.


Subject(s)
Eye Movements , Eye-Tracking Technology , Virtual Reality , Humans , Young Adult , Saccades
2.
Sci Data ; 8(1): 184, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272404

ABSTRACT

This manuscript presents GazeBase, a large-scale longitudinal dataset containing 12,334 monocular eye-movement recordings captured from 322 college-aged participants. Participants completed a battery of seven tasks in two contiguous sessions during each round of recording, including a - (1) fixation task, (2) horizontal saccade task, (3) random oblique saccade task, (4) reading task, (5/6) free viewing of cinematic video task, and (7) gaze-driven gaming task. Nine rounds of recording were conducted over a 37 month period, with participants in each subsequent round recruited exclusively from prior rounds. All data was collected using an EyeLink 1000 eye tracker at a 1,000 Hz sampling rate, with a calibration and validation protocol performed before each task to ensure data quality. Due to its large number of participants and longitudinal nature, GazeBase is well suited for exploring research hypotheses in eye movement biometrics, along with other applications applying machine learning to eye movement signal analysis. Classification labels produced by the instrument's real-time parser are provided for a subset of GazeBase, along with pupil area.


Subject(s)
Eye Movements , Adolescent , Adult , Eye-Tracking Technology/instrumentation , Female , Humans , Longitudinal Studies , Male , Middle Aged , Pupil , Reading , Young Adult
3.
J Eye Mov Res ; 14(3)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34122749

ABSTRACT

Typically, the position error of an eye-tracking device is measured as the distance of the eye-position from the target position in two-dimensional space (angular offset). Accuracy is the mean angular offset. The mean is a highly interpretable measure of central tendency if the underlying error distribution is unimodal and normal. However, in the context of an underlying multimodal distribution, the mean is less interpretable. We will present evidence that the majority of such distributions are multimodal. Only 14.7% of fixation angular offset distributions were unimodal, and of these, only 11.5% were normally distributed. (Of the entire dataset, 1.7% were unimodal and normal.) This multimodality is true even if there is only a single, continuous tracking fixation segment per trial. We present several approaches to measure accuracy in the face of multimodality. We also address the role of fixation drift in partially explaining multimodality.

SELECTION OF CITATIONS
SEARCH DETAIL
...