Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 12: 969787, 2022.
Article in English | MEDLINE | ID: mdl-35992852

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors in adulthood with a median survival of only 15 months. This poor prognosis is related to GBM's ability to extensively infiltrate the surrounding brain parenchyma resulting in diffuse spread of neoplastic cells in the brain, responsible for high rate of recurrence. CD44 (Cluster of Differentiation 44) is a transmembrane protein, overexpressed in multiple cancer types, including gliomas, and implicated in cell motility, proliferation and angiogenesis. Multiple studies have investigated the role of CD44 in GBM cells and have highlighted a link between tumor malignancy and CD44 expression. However up to date, little is known of the role of CD44 on cells from the tumor microenvironment (TME). Here, we have investigated a potential role of CD44 in the TME in regards to GBM invasiveness. Using an ex-vivo organotypic brain slice invasion assay, we show that absence of CD44 from the TME impairs the ability of glioma cells to invade the surrounding brain parenchyma. By deleting CD44 in the astrocytic, endothelial and myeloid compartments, we show that it is specifically CD44 expression in myeloid cells that is responsible for the observed phenotype. Combining in vivo studies in cell-specific knock-out mice and in vitro analyses on primary microglia we demonstrate that myeloid CD44 is implicated in Toll Like Receptor 2 signaling and is a major regulator of Matrix metalloproteinase 9 expression.

2.
Exp Dermatol ; 30(11): 1619-1630, 2021 11.
Article in English | MEDLINE | ID: mdl-33783869

ABSTRACT

The invasiveness of late-stage cutaneous squamous cell carcinoma (cSCC) is associated with poor patients' prognosis and linked to strong upregulation of the glycoprotein Podoplanin (PDPN) in cancer cells. However, the function of PDPN in these processes in cSCC carcinogenesis has not been characterized in detail yet. Employing a CRISPR/Cas9-based loss-of-function approach on murine cSCC cells, we show that the loss of Pdpn results in decreased migration and invasion in vitro. Complementing these in vitro studies, labelled murine control and Pdpn knockout cells were injected orthotopically into the dermis of nude mice to recapitulate the formation of human cSCC displaying a well-differentiated morphology with a PDPN-positive reaction in fibroblasts in the tumor stroma. Smaller tumors were observed upon Pdpn loss, which is associated with reduced tumor cell infiltration into the stroma. Utilizing Pdpn mutants in functional experiments in vitro, we provide evidence that both the intra- and extracellular domains are essential for cancer cell invasion. These findings underline the critical role of PDPN in cSCC progression and highlight potential therapeutic strategies targeting PDPN-dependent cancer cell invasion, especially in late-stage cSCC patients.


Subject(s)
Carcinoma, Squamous Cell/pathology , Membrane Glycoproteins/physiology , Skin Neoplasms/pathology , Animals , Mice , Mice, Nude , Neoplasm Invasiveness
3.
Cancers (Basel) ; 13(2)2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33435218

ABSTRACT

Glioblastomas (GBM) are the most aggressive tumors affecting the central nervous system in adults, causing death within, on average, 15 months after diagnosis. Immunocompetent in-vivo models that closely mirror human GBM are urgently needed for deciphering glioma biology and for the development of effective treatment options. The murine GBM cell lines currently available for engraftment in immunocompetent mice are not only exiguous but also inadequate in representing prominent characteristics of human GBM such as infiltrative behavior, necrotic areas, and pronounced tumor heterogeneity. Therefore, we generated a set of glioblastoma cell lines by repeated in vivo passaging of cells isolated from a neural stem cell-specific Pten/p53 double-knockout genetic mouse brain tumor model. Transcriptome and genome analyses of the cell lines revealed molecular heterogeneity comparable to that observed in human glioblastoma. Upon orthotopic transplantation into syngeneic hosts, they formed high-grade gliomas that faithfully recapitulated the histopathological features, invasiveness and immune cell infiltration characteristic of human glioblastoma. These features make our cell lines unique and useful tools to study multiple aspects of glioblastoma pathomechanism and to test novel treatments in an intact immune microenvironment.

SELECTION OF CITATIONS
SEARCH DETAIL
...