Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Lett ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38401876

ABSTRACT

Reproducible aerosol generation in combination with stable aerosol properties are essential prerequisites for compliant performance of acute or repeated inhalation toxicity tests of particulate materials according to OECD TG 403, 436, 412, or 413. A frequent problem of powder aerosol generation is the formation of coarse agglomerates with low shear resistance, which are beyond the tolerable size range but not detected by the prescribed aerodynamic measurement techniques by cascade impactor as the measurement conditions cause a disintegration into smaller fragments. But such agglomerates are observed during the transport to the inhalation chambers. These effects particularly apply to high mass concentrations and low-density powders, i.e., pyrogenic oxides. This study describes the transport influence in the airflow on the change of powder aerosols and on their respirability. A simplified short tube set-up was developed for the aerosol transport pre-tests, which allows the determination of the optimal aerosol formation conditions for the inhalation tests. The particles were measured with low shear using laser diffraction measurement or optical particle counters. The calculation of the aerodynamic particle sizes prescribed in the guidelines requires knowledge of the effective particle density of the porous aerosol particles. A practicable method for determining these is presented and described. In the outlook, first low concentration measurements show that clear agglomeration effects can also occur at particle concentrations around 20 mg/m³.

2.
Sci Rep ; 11(1): 21843, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750488

ABSTRACT

Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) is a promising approach with a high optimization potential for the treatment of peritoneal carcinomatosis. To study the efficacy of PIPAC and drugs, first rodent cancer models were developed. But inefficient drug aerosol supply and knowledge gaps concerning spatial drug distribution can limit the results based on such models. To study drug aerosol supply/deposition, computed tomography scans of a rat capnoperitoneum were used to deduce a virtual and a physical phantom of the rat capnoperitoneum (RCP). RCP qualification was performed for a specific PIPAC method, where the capnoperitoneum is continuously purged by the drug aerosol. In this context, also in-silico analyses by computational fluid dynamic modelling were conducted on the virtual RCP. The physical RCP was used for ex-vivo granulometric analyses concerning drug deposition. Results of RCP qualification show that aerosol deposition in a continuous purged rat capnoperitoneum depends strongly on the position of the inlet and outlet port. Moreover, it could be shown that the droplet size and charge condition of the drug aerosol define the deposition efficiency. In summary, the developed virtual and physical RCP enables detailed in-silico and ex-vivo analyses on drug supply/deposition in rodents.


Subject(s)
Antineoplastic Agents/administration & dosage , Peritoneal Neoplasms/drug therapy , Peritoneum/diagnostic imaging , Aerosols , Animals , Antineoplastic Agents/pharmacokinetics , Computer Simulation , Computer-Aided Design , Humans , Hydrodynamics , Injections, Intraperitoneal/instrumentation , Injections, Intraperitoneal/methods , Models, Animal , Peritoneal Neoplasms/diagnostic imaging , Peritoneal Neoplasms/metabolism , Peritoneum/metabolism , Phantoms, Imaging , Pressure , Rats , Tomography, X-Ray Computed , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...