Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38113162

ABSTRACT

Most recent musculoskeletal dynamics estimation methods are designed for predefined actions, such as gait, and don't generalize to various tasks. In this work, we address the problem of estimating internal biomechanical forces during more than one actions by introducing unsupervised domain adaptation into a deep learning model. More specifically, we developed a Bidirectional Long Short-Term Memory network for knee contact force prediction, enhanced with correlation alignment layers, in order to minimize the domain shift between kinematic data from different actions. Furthermore, we used the novel Neural State Machine (NSM) as a simulation platform to test and visualize our model predictions in a wide range of trajectories adapted to different 3D scene geometries in real-time. We conducted multiple experiments, including comparison with previous models, model alignment across action classes and real-to-synthetic data alignment. The results showed that the proposed deep learning architecture with domain adaptation performs better than the benchmark in terms of NRMSE and t-test. Overall, our method is capable of predicting knee contact forces for more than one action classes using a single architecture and thereby opens the path for estimating internal forces for intermediate actions, while the knowledge of the hidden state of motion may be used to support personalized rehabilitation. Moreover, our model can be easily integrated into any human motion simulation environment, which shows its potential in enabling biomechanical analysis in an automated and computationally efficient way.


Subject(s)
Knee Joint , Models, Biological , Humans , Mechanical Phenomena , Gait , Lower Extremity , Biomechanical Phenomena
2.
Article in English | MEDLINE | ID: mdl-37624722

ABSTRACT

The inference of 3D motion and dynamics of the human musculoskeletal system has traditionally been solved using physics-based methods that exploit physical parameters to provide realistic simulations. Yet, such methods suffer from computational complexity and reduced stability, hindering their use in computer graphics applications that require real-time performance. With the recent explosion of data capture (mocap, video) machine learning (ML) has started to become popular as it is able to create surrogate models harnessing the huge amount of data stemming from various sources, minimizing computational time (instead of resource usage), and most importantly, approximate real-time solutions. The main purpose of this paper is to provide a review and classification of the most recent works regarding motion prediction, motion synthesis as well as musculoskeletal dynamics estimation problems using ML techniques, in order to offer sufficient insight into the state-of-the-art and draw new research directions. While the study of motion may appear distinct to musculoskeletal dynamics, these application domains provide jointly the link for more natural computer graphics character animation, since ML-based musculoskeletal dynamics estimation enables modeling of more long-term, temporally evolving, ergonomic effects, while offering automated and fast solutions. Overall, our review offers an in-depth presentation and classification of ML applications in human motion analysis, unlike previous survey articles focusing on specific aspects of motion prediction.

3.
Front Bioeng Biotechnol ; 9: 648356, 2021.
Article in English | MEDLINE | ID: mdl-33937216

ABSTRACT

This study presents a semi-automatic framework to create subject-specific total knee replacement finite element models, which can be used to analyze locomotion patterns and evaluate knee dynamics. In recent years, much scientific attention was attracted to pre-clinical optimization of customized total knee replacement operations through computational modeling to minimize post-operational adverse effects. However, the time-consuming and laborious process of developing a subject-specific finite element model poses an obstacle to the latter. One of this work's main goals is to automate the finite element model development process, which speeds up the proposed framework and makes it viable for practical applications. This pipeline's reliability was ratified by developing and validating a subject-specific total knee replacement model based on the 6th SimTK Grand Challenge data set. The model was validated by analyzing contact pressures on the tibial insert in relation to the patient's gait and analysis of tibial contact forces, which were found to be in accordance with the ones provided by the Grand Challenge data set. Subsequently, a sensitivity analysis was carried out to assess the influence of modeling choices on tibial insert's contact pressures and determine possible uncertainties on the models produced by the framework. Parameters, such as the position of ligament origin points, ligament stiffness, reference strain, and implant-bone alignment were used for the sensitivity study. Notably, it was found that changes in the alignment of the femoral component in reference to the knee bones significantly affect the load distribution at the tibiofemoral joint, with an increase of 206.48% to be observed at contact pressures during 5° internal rotation. Overall, the models produced by this pipeline can be further used to optimize and personalize surgery by evaluating the best surgical parameters in a simulated manner before the actual surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...