Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soil Use Manag ; 40(1): e12951, 2024.
Article in English | MEDLINE | ID: mdl-38516181

ABSTRACT

Riparian buffers are expedient interventions for water quality functions in agricultural landscapes. However, the choice of vegetation and management affects soil microbial communities, which in turn affect nutrient cycling and the production and emission of gases such as nitric oxide (NO), nitrous oxide (N2O), nitrogen gas (N2) and carbon dioxide (CO2). To investigate the potential fluxes of the above-mentioned gases, soil samples were collected from a cropland and downslope grass, willow and woodland riparian buffers from a replicated plot scale experimental facility. The soils were re-packed into cores and to investigate their potential to produce the aforementioned gases via potential denitrification, a potassium nitrate (KNO3 -) and glucose (labile carbon)-containing amendment, was added prior to incubation in a specialized laboratory DENItrification System (DENIS). The resulting NO, N2O, N2 and CO2 emissions were measured simultaneously, with the most NO (2.9 ± 0.31 mg NO m-2) and N2O (1413.4 ± 448.3 mg N2O m-2) generated by the grass riparian buffer and the most N2 (698.1 ± 270.3 mg N2 m-2) and CO2 (27,558.3 ± 128.9 mg CO2 m-2) produced by the willow riparian buffer. Thus, the results show that grass riparian buffer soils have a greater NO3 - removal capacity, evidenced by their large potential denitrification rates, while the willow riparian buffers may be an effective riparian buffer as its soils potentially promote complete denitrification to N2, especially in areas with similar conditions to the current study.

2.
Sci Total Environ ; 831: 154819, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35346701

ABSTRACT

Grasslands cover around 25% of the global ice-free land surface, they are used predominantly for forage and livestock production and are considered to contribute significantly to soil carbon (C) sequestration. Recent investigations into using 'nature-based solutions' to limit warming to <2 °C suggest up to 25% of GHG mitigation might be achieved through changes to grassland management. In this study we evaluate pasture management interventions at the Rothamsted Research North Wyke Farm Platform, under commercial farming conditions, over two years and consider their impacts on net CO2 exchange. We investigate if our permanent pasture system (PP) is, in the short-term, a net sink for CO2 and whether reseeding this with deep-rooting, high-sugar grass (HS) or a mix of high-sugar grass and clover (HSC) might increase the net removal of atmospheric CO2. In general CO2 fluxes were less variable in 2018 than in 2017 while overall we found that net CO2 fluxes for the PP treatment changed from a sink in 2017 (-5.40 t CO2 ha-1 y-1) to a source in 2018 (6.17 t CO2 ha-1 y-1), resulting in an overall small source of 0.76 t CO2 ha-1 over the two years for this treatment. HS showed a similar trend, changing from a net sink in 2017 (-4.82 t CO2 ha-1 y-1) to a net source in 2018 (3.91 t CO2 ha-1 y-1) whilst the HSC field was a net source in both years (3.92 and 4.10 t CO2 ha-1 y-1, respectively). These results suggested that pasture type has an influence in the atmospheric CO2 balance and our regression modelling supported this conclusion, with pasture type and time of the year (and their interaction) being significant factors in predicting fluxes.


Subject(s)
Carbon Cycle , Carbon Dioxide , Agriculture , Carbon Dioxide/analysis , Soil , Sugars
SELECTION OF CITATIONS
SEARCH DETAIL
...