Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 12116, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108538

ABSTRACT

In grazing systems, urine patches deposited by livestock are hotspots of nutrient cycling and the most important source of nitrous oxide (N2O) emissions. Studies of the effects of urine deposition, including, for example, the determination of country-specific N2O emission factors, require natural urine for use in experiments and face challenges obtaining urine of the same composition, but of differing concentrations. Yet, few studies have explored the importance of storage conditions and processing of ruminant urine for use in subsequent gaseous emission experiments. We conducted three experiments with sheep urine to determine optimal storage conditions and whether partial freeze-drying could be used to concentrate the urine, while maintaining the constituent profile and the subsequent urine-derived gaseous emission response once applied to soil. We concluded that filtering of urine prior to storage, and storage at - 20 °C best maintains the nitrogen-containing constituent profile of sheep urine samples. In addition, based on the 14 urine chemical components determined in this study, partial lyophilisation of sheep urine to a concentrate represents a suitable approach to maintain the constituent profile at a higher overall concentration and does not alter sheep urine-derived soil gaseous emissions.


Subject(s)
Freeze Drying/standards , Nitrogen Cycle , Nitrogen/urine , Nitrous Oxide/urine , Specimen Handling/standards , Animals , Freeze Drying/methods , Sheep , Specimen Handling/methods
2.
Rapid Commun Mass Spectrom ; 33(5): 449-460, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30561863

ABSTRACT

RATIONALE: Isotopic signatures of N2 O can help distinguish between two sources (fertiliser N or endogenous soil N) of N2 O emissions. The contribution of each source to N2 O emissions after N-application is difficult to determine. Here, isotopologue signatures of emitted N2 O are used in an improved isotopic model based on Rayleigh-type equations. METHODS: The effects of a partial (33% of surface area, treatment 1c) or total (100% of surface area, treatment 3c) dispersal of N and C on gaseous emissions from denitrification were measured in a laboratory incubation system (DENIS) allowing simultaneous measurements of NO, N2 O, N2 and CO2 over a 12-day incubation period. To determine the source of N2 O emissions those results were combined with both the isotope ratio mass spectrometry analysis of the isotopocules of emitted N2 O and those from the 15 N-tracing technique. RESULTS: The spatial dispersal of N and C significantly affected the quantity, but not the timing, of gas fluxes. Cumulative emissions are larger for treatment 3c than treatment 1c. The 15 N-enrichment analysis shows that initially ~70% of the emitted N2 O derived from the applied amendment followed by a constant decrease. The decrease in contribution of the fertiliser N-pool after an initial increase is sooner and larger for treatment 1c. The Rayleigh-type model applied to N2 O isotopocules data (δ15 Nbulk -N2 O values) shows poor agreement with the measurements for the original one-pool model for treatment 1c; the two-pool models gives better results when using a third-order polynomial equation. In contrast, in treatment 3c little difference is observed between the two modelling approaches. CONCLUSIONS: The importance of N2 O emissions from different N-pools in soil for the interpretation of N2 O isotopocules data was demonstrated using a Rayleigh-type model. Earlier statements concerning exponential increase in native soil nitrate pool activity highlighted in previous studies should be replaced with a polynomial increase with dependency on both N-pool sizes.

3.
Geoderma ; 305: 336-345, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29104306

ABSTRACT

Agricultural soils are a major source of nitric- (NO) and nitrous oxide (N2O), which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N2O are microbial nitrification and denitrification, and emissions of NO and N2O generally increase after fertiliser application. The present study investigated the impact of N-source distribution on emissions of NO and N2O from soil and the significance of denitrification, rather than nitrification, as a source of NO emissions. To eliminate spatial variability and changing environmental factors which impact processes and results, the experiment was conducted under highly controlled conditions. A laboratory incubation system (DENIS) was used, allowing simultaneous measurement of three N-gases (NO, N2O, N2) emitted from a repacked soil core, which was combined with 15N-enrichment isotopic techniques to determine the source of N emissions. It was found that the areal distribution of N and C significantly affected the quantity and timing of gaseous emissions and 15N-analysis showed that N2O emissions resulted almost exclusively from the added amendments. Localised higher concentrations, so-called hot spots, resulted in a delay in N2O and N2 emissions causing a longer residence time of the applied N-source in the soil, therefore minimising NO emissions while at the same time being potentially advantageous for plant-uptake of nutrients. If such effects are also observed for a wider range of soils and conditions, then this will have major implications for fertiliser application protocols to minimise gaseous N emissions while maintaining fertilisation efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...