Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(14): 8740-9, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25739103

ABSTRACT

Conception of new pyrimidylmethylamine (pyrma) ligands and their corresponding Pd(II) complexes has been described. Both symmetrical and non-symmetrical ligands were prepared and subjected to complexation. Two different coordination modes, Pd(N,N)- or Pd(C,N,N)-pyrma, have been evidenced depending on the substitution of the pyrimidine ring and the nature or the shape of the additional pendant arm. In a non-symmetrical pyrimidine series, the substituent-induced discrimination of each heterocyclic nitrogen atom provoked regio-controlled coordination to the metal center. The molecular structure of pyrma-Pd(II) complexes in the solution state has been elucidated thanks to combined NMR experiments and DFT calculations. This study highlights the potency of (15)N and (13)C NMR spectroscopy for the elucidation of the regio-selective coordination to the Pd(II) in the pyrma-based complex series. DFT calculations were highly relevant to the identification of crucial factors that govern the regio-selectivity and the complexation modes. Close predicted and experimental chemical shift values put into relief the reliability of coordination modes for the most stable complexes in solution, depicted by DFT approaches.

2.
Nature ; 515(7526): 261-3, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25141177

ABSTRACT

Genetic diversity is the amount of variation observed between DNA sequences from distinct individuals of a given species. This pivotal concept of population genetics has implications for species health, domestication, management and conservation. Levels of genetic diversity seem to vary greatly in natural populations and species, but the determinants of this variation, and particularly the relative influences of species biology and ecology versus population history, are still largely mysterious. Here we show that the diversity of a species is predictable, and is determined in the first place by its ecological strategy. We investigated the genome-wide diversity of 76 non-model animal species by sequencing the transcriptome of two to ten individuals in each species. The distribution of genetic diversity between species revealed no detectable influence of geographic range or invasive status but was accurately predicted by key species traits related to parental investment: long-lived or low-fecundity species with brooding ability were genetically less diverse than short-lived or highly fecund ones. Our analysis demonstrates the influence of long-term life-history strategies on species response to short-term environmental perturbations, a result with immediate implications for conservation policies.


Subject(s)
Evolution, Molecular , Genetic Variation/genetics , Genetics, Population , Genome/genetics , Genomics , Phylogeny , Animals , Ecology
3.
J Evol Biol ; 27(3): 593-603, 2014 Mar.
Article in English | MEDLINE | ID: mdl-26227898

ABSTRACT

The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life-history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome-wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA-seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes ­ a marker of the effective population size ­ in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels.


Subject(s)
Genomics , Insecta/genetics , Population Density , Animals , Insecta/classification , Phylogeny , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...