Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Dis ; 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36265144

ABSTRACT

Lethal Yellowing (LY) disease causes major damage to palms in Central America and the Caribbean. It has been reported as far south as Antigua (Myrie et al., 2014). LY affects over forty palm species, seriously impacts the coconut industry and alters the landscapes on islands with a tourist-based economy. In March 2021, the presence of LY disease was regularly monitored in Guadeloupe. Two palm species (Cocos nucifera and Pritchardia sp.) died on a private property in Saint-Anne, Grande Terre. Yellowing of lower fronds and necrosis of inflorescences were reported on some neighboring palms. One symptomatic Cocos nucifera (GP21-007) and four symptomatic Pritchardia sp. (GP21-005, GP21-006, GP21-008 and GP21-009) were sampled by stem drilling. Samples from four asymptomatic coconut trees (GP21-001 to GP21-004) were collected in the locality of Deshaies. DNA was extracted from the nine sawdust samples following a cetyltrimethylammonium bromide (CTAB) modified protocol (Doyle and Doyle, 1990). A quantitative polymerase chain reaction (PCR), following the protocol described by Christensen et al. (2004), was performed on DNA to diagnose the presence of phytoplasmas. An exponential amplification was observed for all DNA extracts from symptomatic palm samples (threshold number of PCR cycles (Ct) ranged from 18.50 to 23.58). DNA from asymptomatic samples yielded negative results (undetermined Ct). To identify the phytoplasma associated with LY, DNA samples were subjected to PCR, based on the 16SrRNA gene, plus internal transcribed spacers (ITS) using P1-1T (Pilet et al., 2021)/P7 (Schneider et al., 1995) primers, and secA gene using the primer pair secAFor1/secARev1 (Hodgetts et al. 2008). Amplicons of 1.8 kb covering the 16S ribosomal operon and 830 bp for the secA gene were produced using DNA from symptomatic trees. All amplicons were double strand sequenced (Genewiz, UK). The corresponding sequences were deposited in GenBank and subjected to BLASTn on NCBI. Sequences of the ribosomal operon gene (accession no. ON521114 to ON521118) were identical for the five positive samples. Sequencing revealed two distinct ribosomal operons with heterozygous peaks on the DNA chromatogram. The first aMino ambiguity (M = Adenine or Cytosine) was observed in the 16Sr RNA gene. The second was observed in the first intergenic transcript spacer. The 16S rDNA sequence (M = Cytosine) presented 100% identity with accession no. HQ613874 and 99.93% with accession no. U18747, the reference sequence for 'Candidatus Phytoplasma palmae'. The virtual RFLP pattern derived from the 16S rDNA F2nR2 fragment and identified using iPhyclassifier (Zhao et al. 2009) was identical to the reference pattern for the 16SrIV-A subgroup. A unique sequence was obtained for the partial secA gene (OP136139 to OP136143), sharing 100% identity with EU267187 for the palm LY phytoplasma preprotein translocase subunit (secA) gene. This is the first report of 'Ca. Phytoplasma palmae' (subgroup 16SrIV-A) associated with palm LY disease on Cocos nucifera and Pritchardia sp. in Guadeloupe. Measures to eradicate LY were implemented as soon as its presence was confirmed in Guadeloupe. LY phytoplasmas continue to spread in the Caribbean and are approaching South America, where the known vector, Haplaxius crudus, has already been reported (Silva et al., 2019). This poses a major threat to the coconut economy and the diversity of palm trees.

2.
J Clin Med ; 9(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339380

ABSTRACT

Descriptive and retrospective studies without control groups have suggested a possible association between primary Sjögren's syndrome (pSS) and vitamin B12 (B12) deficiency. This is of importance because several mucosal and neurological features are common to these two conditions and could be prevented or reversed in case of B12 deficiency. We aimed to evaluate the association between pSS and B12 deficiency. We prospectively assessed the B12 status of 490 patients hospitalized in an internal medicine department over a 15-week period. Patients with pernicious anemia were excluded. We extracted patients with pSS and paired them with controls according to age and sex, with a 1:5 ratio. Twenty-one pSS patients were paired with 105 control patients. The median age was 70 years old (51-75) and 95.2% of patients were women. The plasma B12 level was lower in pSS patients (329 (293-521) ng/L vs. 456 (341-587) ng/L, p < 0.0001). B12 deficiency was associated with pSS (42.9% among pSS patients vs. 11.4% among controls), even after adjustment for other causes of B12 deficiency (OR 6.45 (95%CI: 2.08-20.0)). In conclusion, pSS appeared to be associated with B12 deficiency, even after the exclusion of pernicious anemia. This justifies screening and treating B12 deficiency in pSS patients.

3.
PLoS One ; 12(4): e0175247, 2017.
Article in English | MEDLINE | ID: mdl-28384335

ABSTRACT

A working group established in the framework of the EUPHRESCO European collaborative project aimed to compare and validate diagnostic protocols for the detection of "Flavescence dorée" (FD) phytoplasma in grapevines. Seven molecular protocols were compared in an interlaboratory test performance study where each laboratory had to analyze the same panel of samples consisting of DNA extracts prepared by the organizing laboratory. The tested molecular methods consisted of universal and group-specific real-time and end-point nested PCR tests. Different statistical approaches were applied to this collaborative study. Firstly, there was the standard statistical approach consisting in analyzing samples which are known to be positive and samples which are known to be negative and reporting the proportion of false-positive and false-negative results to respectively calculate diagnostic specificity and sensitivity. This approach was supplemented by the calculation of repeatability and reproducibility for qualitative methods based on the notions of accordance and concordance. Other new approaches were also implemented, based, on the one hand, on the probability of detection model, and, on the other hand, on Bayes' theorem. These various statistical approaches are complementary and give consistent results. Their combination, and in particular, the introduction of new statistical approaches give overall information on the performance and limitations of the different methods, and are particularly useful for selecting the most appropriate detection scheme with regards to the prevalence of the pathogen. Three real-time PCR protocols (methods M4, M5 and M6 respectively developed by Hren (2007), Pelletier (2009) and under patent oligonucleotides) achieved the highest levels of performance for FD phytoplasma detection. This paper also addresses the issue of indeterminate results and the identification of outlier results. The statistical tools presented in this paper and their combination can be applied to many other studies concerning plant pathogens and other disciplines that use qualitative detection methods.


Subject(s)
Plant Pathology , Reproducibility of Results
4.
Plant Dis ; 101(12): 2104-2109, 2017 Dec.
Article in English | MEDLINE | ID: mdl-30677368

ABSTRACT

'Candidatus Liberibacter solanacearum' is a bacterium associated with several vegetative disorders on solanaceous and apiaceous crops. Following the recent detection of the bacterium in carrots in Europe, and particularly carrot plants used for seed production in France, two independent laboratories conducted experiments on the transmission of this pathogen by seed and had discordant results: one study showed no bacterial transmission to plants, and the other showed transmission to carrot seedlings starting from the fourth month of culture. To test the hypothesis that growing conditions affect seed transmission efficiencies, trials were renewed in 2015 on four lots of 500 carrot seeds naturally contaminated with 'Ca. L. solanacearum' and two lots of 100 healthy seeds. The plants were grown for 6 months in an insect-proof NS2 greenhouse. Sets of 108 plants from the contaminated lots and 24 plants from the healthy lots were individually analyzed each month using real-time PCR to detect the bacterium. The detection tests on seeds and plants from healthy lots were always negative. During the 6 months of the trial, no plants from the contaminated seed lots tested positive for the bacterium or showed any infection symptoms. These results indicate that transmission of 'Ca. L. solanacearum' by carrot seed is rare and difficult to reproduce.


Subject(s)
Daucus carota , Rhizobiaceae , Animals , Daucus carota/virology , Host-Pathogen Interactions , Insecta , Rhizobiaceae/genetics , Seeds/virology
5.
Plant Dis ; 101(8): 1383-1390, 2017 Aug.
Article in English | MEDLINE | ID: mdl-30678593

ABSTRACT

'Candidatus Liberibacter solanacearum' (Lso) is an emerging phytopathogenic bacterium that causes significant crop losses worldwide. This bacterium has been identified in association with diseases of several solanaceous crops in the United States and New Zealand, and with carrot and celery crops in several European countries. Five Lso haplotypes (LsoA, LsoB, LsoC, LsoD, and LsoE) have now been described worldwide. In France, symptoms of Lso were observed on plants of the Apiaceae family in several regions. One hundred and ninety-two samples of apiaceous plants were collected from 2012 to 2016 in different geographical regions and were tested for the occurrence of Lso by real-time PCR assay. In addition to carrot and celery, Lso was detected in four other apiaceous crops: chervil, fennel, parsley, and parsnip. These new findings suggest that Lso has a wider natural host range within the Apiaceae family than expected. To identify the Lso haplotypes present in France, we sequenced and analyzed the 16S rRNA gene and the 50S ribosomal protein rpIJ-rpIL gene region from a representative bacterial collection of 44 Lso-positive samples. Our SNP analysis revealed the occurrence of two distinct bacterial lineages that correspond to haplotypes D and E. Then, we assessed the phylogenetic relationships between strains isolated from France and a worldwide collection of Lso isolates by using the rpIJ-rpIL gene region sequences. The neighbor-joining tree constructed delineated five clusters corresponding to the five Lso haplotypes, with LsoD and LsoE being closely related phylogenetically. Altogether, the data presented here constitute a first step toward a better understanding of the genetic diversity among Lso haplotypes in France, and provide new insights into the host range of this emerging bacterial species.


Subject(s)
Apiaceae , Haplotypes , Rhizobiaceae , Apiaceae/virology , France , Phylogeny , Plant Diseases/microbiology , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/classification , Rhizobiaceae/genetics , Ribosome Subunits, Large, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL