Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Small ; : e2400265, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660825

ABSTRACT

Two titanium-based MOFs MIL-125 and MIL-125_NH2 are synthesized and characterized using high-temperature powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), N2 sorption, Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), and electron paramagnetic resonance (EPR). Stable up to 300 °C, both compounds exhibited similar specific surface areas (SSA) values (1207 and 1099 m2 g-1 for MIL-125 and MIL-125_NH2, respectively). EPR signals of Ti3+ are observed in both, whith MIL-125_NH2 also showing ─NH2 ●+ signatures. Both MOFs efficiently adsorbed iodine in continuous gas flow over five days, with MIL-125 trapping 1.9 g.g-1 and MIL-125_NH2 trapping 1.6 g.g-1. MIL-125_NH2 exhibited faster adsorption kinetics due to its smaller band gap (2.5 against 3.6 eV). In situ Raman spectroscopy conducted during iodine adsorption revealed signal evolution from "free" I2 to "perturbed" I2, and I3 -. TGA and in situ Raman desorption experiments showed that ─NH2 groups improved the stabilization of I3 - due to an electrostatic interaction with NH2 ●+BDC radicals. The Albery model indicated longer lifetimes for iodine desorption in I2@MIL-125_NH2, attributed to a rate-limiting step due to stronger interaction between the anionic iodine species and the ─NH2 ●+ radicals. This study underscores how MOFs with efficient charge separation and hole-stabilizer functional groups enhance iodine stability at higher temperatures.

2.
Dalton Trans ; 53(13): 5784-5787, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451138

ABSTRACT

A green synthesis of UiO-66-NH2 embedded in chitosan and deposited on textiles has been investigated for the degradation of chemical warfare agents. This method requires no heating or use of toxic solvents. The composite synthesized presents an interesting efficiency in detoxifying common simulants of chemical warfare agents, such as DMNP. In parallel, resistance and permeability tests were also realized in order to confirm the suitability of the composites for further applications.

3.
ACS Appl Mater Interfaces ; 15(46): 53395-53404, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37934853

ABSTRACT

This study investigates the use of chitosan hydrogel microspheres as a template for growing an extended network of MOF-type HKUST-1. Different drying methods (supercritical CO2, freeze-drying, and vacuum drying) were used to generate three-dimensional polysaccharide nanofibrils embedding MOF nanoclusters. The resulting HKUST-1@Chitosan beads exhibit uniform and stable loadings of HKUST-1 and were used for the adsorption of CO2, CH4, Xe, and Kr. The maximum adsorption capacity of CO2 was found to be 1.98 mmol·g-1 at 298 K and 1 bar, which is significantly higher than those of most MOF-based composite materials. Based on Henry's constants, thus-prepared HKUST-1@CS beads also exhibit fair selectivity for CO2 over CH4 and Xe over Kr, making them promising candidates for capture and separation applications.

4.
ACS Appl Mater Interfaces ; 15(25): 31032-31048, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37315191

ABSTRACT

Metal-organic frameworks (MOFs) have been largely investigated worldwide for their use in the capture of radioactive iodine due to its potential release during nuclear accident events and reprocessing of nuclear fuel. The present work deals with the capture of gaseous I2 under a continuous flow and its subsequent transformation into I3- within the porous structures of three distinct, yet structurally related, terephthalate-based MOFs: MIL-125(Ti), MIL-125(Ti)_NH2, and CAU-1(Al)_NH2. The synthesized materials exhibited specific surface areas (SSAs) with similar order of magnitude: 1207, 1099, and 1110 m2 g-1 for MIL-125(Ti), MIL-125(Ti)_NH2, and CAU-1(Al)_NH2, respectively. Because of that, it was possible to evaluate the influence of other variables over the iodine uptake capacity─such as band gap energies, functional groups, and charge transfer complexes (CTC). After 72 h of contact with the I2 gas flow, MIL-125(Ti)_NH2 was able to trap 11.0 mol mol-1 of I2, followed by MIL-125(Ti) (8.7 mol mol-1), and by CAU-1(Al)_NH2 (4.2 mol mol-1). The enhanced ability to retain I2 in the MIL-125(Ti)_NH2 was associated with a combined effect between its amino group (which has a great affinity toward iodine), its smaller band gap (2.5 eV against 2.6 and 3.8 eV for CAU-1(Al)_NH2 and MIL-125(Ti), respectively), and its efficient charge separation. In fact, the presence of a linker-to-metal charge transfer (LMCT) mechanism in MIL-125(Ti) compounds separates the photogenerated electrons and holes into the two distinct moieties of the MOF: the organic linker (which stabilizes the holes) and the oxy/hydroxy inorganic cluster (which stabilizes the electrons). This effect was observed using EPR spectroscopy, whereas the reduction of the Ti4+ cations into the paramagnetic Ti3+ species was evidenced after irradiation of the pristine Ti-based MOFs with UV light (<420 nm). In contrast, because CAU-1(Al)_NH2 exhibits a purely linker-based transition (LBT)─with no EPR signals related to Al paramagnetic species─it tends to exhibit faster recombination of the photogenerated charge carriers as, in this case, both electrons and holes are located over the organic linker. Furthermore, the transformation of the gaseous I2 into In- [n = 5, 7, 9, ...] intermediates and then into I3- species was evaluated using Raman spectroscopy by following the evolution of their respective bands at about 198, 180, and 113 cm-1. This conversion─which is favored by an effective charge separation and smaller band gaps─increases the I2 uptake capacity of the compounds by creating specific adsorption sites for these anionic species. In fact, because the -NH2 groups act as an antenna to stabilize the photogenerated holes, both In- and I3- are adsorbed into the organic linker via an electrostatic interaction with these positively charged entities. Finally, changes regarding the EPR spectra before and after the iodine loading were considered to propose a mechanism for the electron transfer from the MOFs structure to the I2 molecules considering their different characteristics.

5.
Dalton Trans ; 51(42): 16170-16180, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36205356

ABSTRACT

106Ru is a radioactive isotope usually generated by the nuclear industry within power plant reactors. During a nuclear accident, 106Ru reacts with oxygen, leading to the production of highly volatile ruthenium tetroxide RuO4. The combination of volatility and radioactivity makes 106RuO4, one of the most radiotoxic species and justifies the development of a specific setup for its capture and immobilization. In this study, we report for the first time the capture and immobilization of gaseous RuO4 within a porous metal-organic framework (UiO-66-NH2). We used specific installation for the production of gaseous RuO4 as well as for the quantification of this gas trapped within the filtering medium. We proved that UiO-66-NH2 has remarkable affinity for RuO4 capture, as this MOF exhibited the worldwide highest RuO4 decontamination factor (DF of 5745), hundreds of times higher than the DF values of sorbents daily used by the nuclear industry (zeolites or activated charcoal). The efficiency of UiO-66-NH2 can be explained by its pore diameters well adapted to the capture and immobilization of RuO4 as well as its conversion into stable RuO2 within the pores. This conversion corresponds to the reactivity of RuO4 with the MOF organic sub-network, leading to the oxidation of terephthalate ligands. As proved by powder X-ray diffraction and NMR techniques, these modifications did not decompose the MOF structure.

6.
Inorg Chem ; 61(39): 15346-15358, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36112884

ABSTRACT

The reactivity of 2,3-pyridine-dicarboxylic (known as quinolinic or H2qui) acid and 2,5-pyridine-dicarboxylic (known as isocinchomeronic or H2icc) acid has been investigated as a complexing agent toward the niobium(IV) tetrachloride precursor (NbCl4·2THF) in different organic solvent mixtures. It resulted in the isolation of four crystalline assemblies of mononuclear coordination complexes 1-4 [Nb(HL)4·solvent], where HL is the monoprotonated quinolinate (Hqui) ligand (complexes 1-3) or the monoprotonated isocinchomeronate ligand (complex 4). For each complex, the discrete niobium(IV) center is eightfold coordinated to four oxygen atoms from the deprotonated carboxylate arm and four nitrogen atoms from the pyridine part of the dicarboxyl ligand with a dodecahedral environment [NbO4N4]. The remaining carboxyl arm (either in 3 or in 5 position) remained under its protonated form, leading to neutral [Nb(HL)4] moieties for compounds 1, 2, and 4, or the anionic [Nb(qui)(Hqui)3]- moiety for compound 3. The complexes are observed in various molecular arrangements, involving intercalated solvent molecules such as acetonitrile in compound 1 ([Nb(Hqui)4·0.8(CH3CN)], obtained at room temperature), a mixture of acetonitrile and pyridine in compound 2 ([Nb(Hqui)4·0.7CH3CN·2PYR], obtained via the solvothermal reaction at 80 °C), a mixture of pyridine and triethylamine, in addition with water and chloride species, in compound 3 ([Nb(qui)(Hqui)3·Cl·HPYR·HTEA·1.5H2O], obtained via solvothermal reaction at 80 °C), and N,N-dimethylformamide in compound 4 ([Nb(Hicc)4·6DMF], obtained at room temperature). The d1 configuration expected for the niobium(IV) centers has been analyzed by magnetic measurements, as well as by EPR and XPS. An anti-ferromagnetism transition has been observed at very low temperatures for complexes 1 (3.6 K) and 4 (3.3 K), for which the shortest Nb···Nb interatomic lengths occur.

7.
Chemistry ; 28(59): e202201464, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35866432

ABSTRACT

The reactivity of aryl monocarboxylic acids (benzoic, 1- or 2-naphtoic, 4'-methylbiphenyl-4-carboxylic, and anthracene-9-carboxylic acids) as complexing agents for the ethoxide niobium(V) (Nb(OEt)5 precursor has been investigated. A total of eight coordination complexes were isolated with distinct niobium(V) nuclearities as well as carboxylate complexation states. The use of benzoic acid gives a tetranuclear core Nb4 (µ2 -O)4 (L)4 (OEt)8 ] (L=benzoate (1)) with four Nb-(µ2 -O)-Nb linkages in a square plane configuration. A similar tetramer, 7, was obtained with 2-naphtoic acid by using a 55 % humid atmosphere synthetic route. Two types of dinuclear brick were identified with one central Nb-(µ2 -O)-Nb linkage; they differ in their complexation state, with one bridging carboxylate ([Nb2 (µ2 -O)(µ2 -OEt)(L)(OEt)6 ], with L=1-naphtoate (3) or anthracene-9-carboxylate (5)) or two bridging carboxylate groups ([Nb2 (µ2 -O)(L)2 (OEt)6 ], with L=4'-methylbiphenyl-4-carboxylic (4) or anthracene-9-carboxylate (6)). An octanuclear moiety [Nb8 (µ2 -O)12 (L)8 (η1 -L)4-x (OEt)4+x ] (with L=2-naphtoate, x=0 or 2; 8) was obtained by using a solvothermal route in acetonitrile; it has a cubic configuration with niobium centers at each node, linked by 12 µ2 -O groups. The formation of the niobium oxo clusters was characterized by infrared and liquid 1 H NMR spectroscopy in order to analyze the esterification reaction, which induces the release of water molecules that further react through oxolation with niobium atoms, in different {Nb2 O}, {Nb4 O4 } and {Nb8 O12 } nuclearities.

8.
ACS Appl Mater Interfaces ; 14(26): 29916-29933, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35758325

ABSTRACT

Many works reported the encapsulation of iodine in metal-organic frameworks as well as the I2 → I3- chemical conversion. This transformation has been examined by adsorbing gaseous iodine on a series of UiO-66 materials and the different Hf/Zr metal ratios (0-100% Hf) were evaluated during the evolution of I2 into I3-. The influence of the hafnium content on the UiO-66 structure was highlighted by PXRD, SEM images, and gas sorption tests. The UiO-66(Hf) presented smaller lattice parameter (a = 20.7232 Å), higher crystallite size (0.18 ≤ Φ ≤ 3.33 µm), and smaller SSABET (818 m2·g-1) when compared to its parent UiO-66(Zr) ─ a = 20.7696 Å, 100 ≤ Φ ≤ 250 nm, and SSABET = 1262 m2·g-1. The effect of replacing Zr atoms by Hf in the physical properties of the UiO-66 was deeply evaluated by a spectroscopic study using UV-vis, FTIR, and Raman characterizations. In this case, the Hf presence reduced the band gap of the UiO-66, from 4.07 eV in UiO-66(Zr) to 3.98 eV in UiO-66(Hf). Furthermore, the UiO-66(Hf) showed a blue shift for several FTIR and Raman bands, indicating a stiffening on the implied interatomic bonds when comparing to UiO-66(Zr) spectra. Hafnium was found to clearly favor the capture of iodine [285 g·mol-1, against 230 g·mol-1 for UiO-66(Zr)] and the kinetic evolution of I2 into I3- after 16 h of I2 filtration. Three iodine species were typically identified by Raman spectroscopy and chemometric analysis. These species are as follows: "free" I2 (206 cm-1), "perturbed" I2 (173 cm-1), and I3- (115 and 141 cm-1). It was also verified, by FTIR spectroscopy, that the oxo and hydroxyl groups of the inorganic [M6O4(OH)4] (M = Zr, Hf) cluster were perturbed after the adsorption of I2 into UiO-66(Hf), which was ascribed to the higher acid character of Hf. Finally, with that in mind and considering that the EPR results discard the possibility of a redox phenomenon involving the tetravalent cations (Hf4+ or Zr4+), a mechanism was proposed for the conversion of I2 into I3- in UiO-66─based on an electron donor-acceptor complex between the aromatic ring of the BDC linker and the I2 molecule.

9.
ACS Appl Mater Interfaces ; 14(18): 21497-21508, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35471817

ABSTRACT

Since the emergence of chemical, biological, radiological, and nuclear risks, significant efforts have been made to create efficient personal protection equipment. Recently, metal-organic framework (MOF) materials have emerged as new promising candidates for the capture and degradation of various threats, like chemical warfare agents (CWAs) or radioactive species. Herein, we report a new synthesis method of MOF-textile composites by microwave irradiation, with direct anchoring of MOFs on textiles. The resistance of the composite has been tested using normed abrasion measurements, and non-stable samples were optimized. The protection capacity of the MOF-textile composite has been tested against dimethyl 4-nitrophenyl phosphate, a common CWA simulant, showing short degradation half-life (30 min). Radiological/nuclear protection has also been tested through uranium uptake (up to 15 mg g-1 adsorbent) and the capture of Kr or Xe gas at 0.9 and 2.9 cm3/g, respectively.

10.
Chemistry ; 28(14): e202104437, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35142402

ABSTRACT

A series of Zr-based UiO-n MOF materials (n=66, 67, 68) have been studied for iodine capture. Gaseous iodine adsorption was collected kinetically from a home-made set-up allowing the continuous measurement of iodine content trapped within UiO-n compounds, with organic functionalities (-H, -CH3 , -Cl, -Br, -(OH)2 , -NO2 , -NH2 , (-NH2 )2 , -CH2 NH2 ) by in-situ UV-Vis spectroscopy. This study emphasizes the role of the amino groups attached to the aromatic rings of the ligands connecting the {Zr6 O4 (OH)4 } brick. In particular, the preferential interaction of iodine with lone-pair groups, such as amino functions, has been experimentally observed and is also based on DFT calculations. Indeed, higher iodine contents were systematically measured for amino-functionalized UiO-66 or UiO-67, compared to the pristine material (up to 1211 mg/g for UiO-67-(NH2 )2 ). However, DFT calculations revealed the highest computed interaction energies for alkylamine groups (-CH2 NH2 ) in UiO-67 (-128.5 kJ/mol for the octahedral cavity), and pointed out the influence of this specific functionality compared with that of an aromatic amine. The encapsulation of iodine within the pore system of UiO-n materials and their amino-derivatives has been analyzed by UV-Vis and Raman spectroscopy. We showed that a systematic conversion of molecular iodine (I2 ) species into anionic I- ones, stabilized as I- ⋅⋅⋅I2 or I3 - complexes within the MOF cavities, occurs when I2 @UiO-n samples are left in ambient light.

11.
ACS Appl Mater Interfaces ; 14(8): 10669-10680, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35188731

ABSTRACT

The use of an extrusion-spheronization process was investigated to prepare robust and highly porous extrudates and granules starting from UiO-66 and UiO-66_NH2 metal-organic framework powders. As-produced materials were applied to the capture of gaseous iodine and the adsorption of xenon and krypton. In this study, biosourced chitosan and hydroxyethyl cellulose (HEC) are used as binders, added in low amounts (less than 5 wt % of the dried solids), as well as a colloidal silica as a co-binder when required. Characterizations of the final shaped materials reveal that most physicochemical properties are retained, except the textural properties, which are impacted by the process and the proportion of binders (BET surface area reduction from 5 to 33%). On the other hand, the mechanical resistance of the shaped materials toward compression is greatly improved by the presence of binders and their respective contents, from 0.5 N for binderless UiO-66 granules to 17 N for UiO-66@HEC granules. UiO-66_NH2-based granules demonstrated consequent iodine capture after 48 h, up to 527 mg/g, in line with the pristine UiO-66_NH2 powder (565 mg/g) and proportionally to the retaining BET surface area (-5% after shaping). Analogously, the shaped materials presented xenon and krypton sorption isotherms correlated to their BET surface area and high predicted xenon/krypton selectivity, from 7.1 to 9.0. Therefore, binder-aided extrusion-spheronization is an adapted method to produce shaped solids with adequate mechanical resistance and retained functional properties.

12.
J Hazard Mater ; 416: 125890, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34492828

ABSTRACT

In the present work, we aim to investigate the ability of the zirconium-based MOF-type compound UiO-66-NH2, to immobilize molecular gaseous iodine under conditions analogous to those encountered in an operating Filtered Containment Venting System (FCVS) line. Typically, the UiO-66-NH2 particles were exposed to 131I (beta and gamma emitters) and submitted to air/steam at 120 °C, under gamma irradiation (1.9 kGy h-1). In parallel to this experiment under simulated accidental conditions, the stability of the binderless UiO-66-NH2 granules under steam and gamma irradiation was investigated. In order to fit with the specifications required by typical venting systems, and to compare the efficiency of the selected MOF to porous materials commonly used by the industry, scale-up syntheses and UiO-66-NH2 millimetric-size shaping were realized. For this task, we developed an original binderless method, in order to analyze solely the efficiency of the UiO-66-NH2 material. The shaped MOF particles were then submitted separately to gamma irradiation, steam and temperature, for confirming their viability in a venting process. Their structural, textural and mechanical behaviors were characterized by the means several techniques including gas sorption, powder X-ray diffraction, infrared spectroscopy and crushing tests. Promising results were obtained to trap gaseous molecular iodine in severe accidental conditions.

13.
Inorg Chem ; 59(16): 11459-11468, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32799463

ABSTRACT

The reactivity of the N-(1-adamantyl)acetamide ligand (L = adam) has been evaluated as precipitating agent for the hexavalent uranyl cation ([U] = 20-60 g L-1) in concentrated nitric acid aqueous solution (0.5-5 M). It results in the formation of a crystalline complex (UO2)(adam)2(NO3)2·2(adam) (1), in which the uranyl center is 8-fold coordinated to two chelating nitrate groups and two N-(1-adamantyl)acetamide (= adam) ligands through the oxygen atom of the amide function. Two other noncoordinating adam moieties are also observed in the crystal structure packing and interact through a hydrogen-bond scheme with the uranyl-centered species. A similar molecular assembly has been obtained with the plutonyl(VI) cation, in the complex (PuO2)(adam)2(NO3)2·2(adam) (2). Precipitation studies indicate high (UO2)(adam)2(NO3)2·2(adam) formation yields (up to 99%U for an L/U molecular ratio of 5/1) for HNO3 concentration in the 0.5-5 M range. However, the precipitation kinetics is rather slow and the reaction is completed after several hours (3-4 h). The calcination of the resulting solid under an air atmosphere led to the formation of the U3O8 oxide from 400 °C through a transient phase UO2 fluorite-type (from 200 °C).

14.
ACS Omega ; 4(7): 12896-12904, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460416

ABSTRACT

Modeling of plutonium(IV) behavior during an accidental fire in a reprocessing plant was considered using various non-radioactive metallic surrogates. Among those elements, cerium(IV) was supposed to be a suitable candidate due to possible formation of a complex with TPB, but its extractability and stability have not been studied previously under representative plutonium uranium reduction extraction (PUREX) conditions. In this work, we investigated the chemical analogy between cerium(IV) and plutonium(IV) in this extractive process and combustion thereof. Distribution ratios are reported for acidities of 1-4 mol L-1 in equal volumes of nitric acid and a 30:70 mixture of tributylphosphate and hydrogenated tetrapropylene. The influences of light, temperature, and extraction time were studied by UV-vis spectroscopy. The results showed that cerium(IV) is extracted quantitatively but is reduced over time to cerium(III) in the organic mixture. Spectrophotometric investigations of this reaction kinetics revealed an apparent rate constant k of 0.021 ± 0.002 mol0.5 L0.5 min-1 at 298 K and an apparent fractional reaction order of 0.5. The activation energy of this reduction was found to be around 82 ± 2 kJ mol-1 by the Arrhenius plot method. The combustion of mono- and biphasic solutions prepared with a cerium(IV) concentration of 10 g L-1 revealed that the extracted complexes, Ce2O·6NO3·3TBP(org) or Ce4O4·8NO3·6TBP(org), are reduced during the combustion. Compositions of the resulting ashes and soot were analyzed and highlighted the presence of pyrophosphates and polycyclic aromatic hydrocarbons, with some traces of cerium. Ce(IV) is not suitable to represent Pu(IV) from a chemical point of view in HNO3/TBP-HTP solutions.

15.
RSC Adv ; 9(40): 22795-22804, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-35514497

ABSTRACT

Two coordination compounds bearing tetravalent uranium were synthesized in the presence of tritopic hemimellitic acid in acetonitrile with a controlled amount of water (H2O/U ≈ 8) and structurally characterized. Compound 1, [U(1,2,3-Hbtc)2]·0.5CH3CN is constructed around an eight-fold coordinated uranium cationic unit [UO8] linked by the poly-carboxylate ligands to form dimeric subunits, which are further connected to form infinite corrugated ribbons and a three-dimensional framework. Compound 2, [U14O8(OH)4Cl8(H2O)16(1,2,3-Hbtc)8(ox)4(ac)4] ({U14}) exhibits an unprecedented polynuclear {U14} poly-oxo uranium cluster surrounded by O-donor and chloride ligands. It is based on a central core of [U6O8] type surrounded by four dinuclear uranium-subunits {U2}. Compound 1 was synthesized by a direct reaction of hemimellitic acid with uranium tetrachloride in acetonitrile (+H2O), while the molecular species ({U14} (2)) crystallized from the supernatant solution after one month. The slow hydrolysis reaction together with the partial decomposition of the starting organic reactants into oxalate and acetate molecules induces the generation of such a large poly-oxo cluster with fourteen uranium centers. Structural comparisons with other closely related uranium-containing clusters, such as the {U12} cluster based on the association of inner core [U6O8] with three dinuclear sub-units {U2}, were performed.

16.
Inorg Chem ; 58(2): 1091-1099, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30592422

ABSTRACT

Association of uranyl nitrate with the macrocycle [P8W48O184]40- in formate buffered aqueous solution leads to the formation of a new compound (K11.3Li8.1Na22)[(UO2)7.2(HCOO)7.8(P8W48O184)Cl8]·89H2O (1). Its characterization by XRD reveals a high disorder of the uranyl cations and the formation of monodimensional chains of anionic [(UO2)7.2(HCOO)7.8(P8W48O184)Cl8]41.4- entities linked through formate ligands. The uranyl species are located either in the coordinating sites of the macrocycle [P8W48O184]40- or at its surface. Further studies of the molecule by SAXS and TEM show that the 1D chain collapses to give rise to the formation of polydisperse spherically aggregated species with an average radius of 129 Å.

17.
Chem Commun (Camb) ; 54(72): 10060-10063, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30132479

ABSTRACT

Two poly-oxo cluster complexes of tetravalent neptunium (Np(iv)), Np38O56Cl18(bz)24(THF)8·nTHF and Np38O56Cl42(ipa)20·mipa (bz = benzoate, THF = tetrahydrofuran, and ipa = isopropanol), were obtained via solvothermal synthesis and structurally characterised by single-crystal X-ray diffraction. The {Np38} clusters are comparable to the analogous {U38} and {Pu38} motifs, filling the gap in this largest poly-oxo cluster series of tetravalent actinides.

18.
Chem Sci ; 9(22): 5021-5032, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29938031

ABSTRACT

A new strategy for the synthesis of large poly-oxo clusters bearing 38 tetravalent uranium atoms {U38} has been developed by controlling the water release from the esterification reaction between a carboxylic acid and an alcohol. The molecular entity [U38O56Cl40(H2O)2(ipa)20]·(ipa) x (ipa = isopropanol) was crystallized from the solvothermal reaction of a mixture of UCl4 and benzoic acid in isopropanol at temperature ranging from 70 to 130 °C. Its crystal structure reveals the molecular assembly of the UO2 fluorite-like inner core {U14} with oxo groups bridging the uranium centers. The {U14} core is further surrounded by six tetrameric sub-units of {U4} to form the {U38} cluster. Its surface is decorated by either bridging- and terminal chloride anions or terminal isopropanol molecules. Another synthesis using the same reactant mixture at room temperature resulted in the crystallization of a discrete dinuclear complex [U2Cl4(bz)4(ipa)4]·(ipa)0.5 (bz = benzoate), in which each uranium center is coordinated by two chlorine atoms, four oxygen atoms from carboxylate groups and two additional oxygen atoms from isopropanol. The slow production of water released from the esterification of isopropanol allows the formation of the giant cluster with oxo bridges linking the uranium atoms at a temperature above 70 °C, whereas no such oxo groups are present in the dinuclear complex formed at room temperature. The kinetics of {U38} crystallization as well as the ester formation are analyzed and discussed. SAXS experiments indicate that the {U38} species are not dominant in the supernatant, but hexanuclear entities which are closely related to the [U6O8] type are formed.

19.
Phys Chem Chem Phys ; 20(24): 16770-16776, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29888355

ABSTRACT

Radioactive gaseous ruthenium tetroxide (RuO4) can be released into the environment in the case of a severe nuclear accident. Using periodic dispersion corrected density functional theory calculations, we have investigated for the first time the adsorption behavior of RuO4 into prototypical porous materials, Metal-Organic Frameworks (MOFs) and zeolites, with the aim of mitigating ruthenium releases to the outside. For the MOFs, we have screened a set of six structures (MIL-53(Al), MIL-120(Al), HKUST-1(Cu), UiO-66(Zr), UiO-67(Zr) and UiO-68(Zr)), while for the zeolites two structures have been selected: mordenite (MOR) with Si/Al ratios of 11 and 5, and faujasite (FAU) with a Si/Al ratio of 2.4. The DFT calculations show that the nature of the porous materials does not have a significant effect on the adsorption energy of RuO4 compounds and that the main interaction is due to the formation of hydrogen bonds. For the tested materials, computational results show that the interaction energies of RuO4 reach their maximum with the hydrated form of HKUST-1(Cu) (-114 kJ mol-1) due to the presence of strong hydrogen bonds between the water molecules and the oxygen atoms of RuO4.

20.
Dalton Trans ; 46(36): 12010-12014, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28848975

ABSTRACT

Aluminium-based metal-organic framework MIL-100 was utilized for the capture of actinide ([UO2]2+, Th4+) and lanthanide (Nd3+) cations. The results indicate a very quick sorption process, leading to very high cation uptakes together with selectivity for Th4+.

SELECTION OF CITATIONS
SEARCH DETAIL
...