Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 233(1): 534-545, 2022 01.
Article in English | MEDLINE | ID: mdl-34537964

ABSTRACT

The genus Manihot, with around 120 known species, is native to a wide range of habitats and regions in the tropical and subtropical Americas. Its high species richness and recent diversification only c. 6 million years ago have significantly complicated previous phylogenetic analyses. Several basic elements of Manihot evolutionary history therefore remain unresolved. Here, we conduct a comprehensive phylogenomic analysis of Manihot, focusing on exhaustive sampling of South American taxa. We find that two recently described species from northeast Brazil's Atlantic Forest were the earliest to diverge, strongly suggesting a South American common ancestor of Manihot. Ancestral state reconstruction indicates early Manihot diversification in dry forests, with numerous independent episodes of new habitat colonization, including into savannas and rainforests within South America. We identify the closest wild relatives to Manihot esculenta, including the crop cassava, and we quantify extensive wild introgression into the cassava gene pool from at least five wild species, including Manihot glaziovii, a species used widely in breeding programs. Finally, we show that this wild-to-crop introgression substantially shapes the mutation load in cassava. Our findings provide a detailed case study for neotropical evolutionary history in a diverse and widespread group, and a robust phylogenomic framework for future Manihot and cassava research.


Subject(s)
Manihot , Biological Evolution , Gene Pool , Manihot/genetics , Phylogeny , South America
2.
Science ; 362(6420): 1309-1313, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30545889

ABSTRACT

Domesticated maize evolved from wild teosinte under human influences in Mexico beginning around 9000 years before the present (yr B.P.), traversed Central America by ~7500 yr B.P., and spread into South America by ~6500 yr B.P. Landrace and archaeological maize genomes from South America suggest that the ancestral population to South American maize was brought out of the domestication center in Mexico and became isolated from the wild teosinte gene pool before traits of domesticated maize were fixed. Deeply structured lineages then evolved within South America out of this partially domesticated progenitor population. Genomic, linguistic, archaeological, and paleoecological data suggest that the southwestern Amazon was a secondary improvement center for partially domesticated maize. Multiple waves of human-mediated dispersal are responsible for the diversity and biogeography of modern South American maize.


Subject(s)
Biological Evolution , Domestication , Zea mays/classification , Zea mays/genetics , Genome, Plant , Models, Biological , Mutation , Phylogeny , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...