Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 8(4): e0038922, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37318217

ABSTRACT

Mycobacterium tuberculosis is exposed to a variety of stresses during a chronic infection, as the immune system simultaneously produces bactericidal compounds and starves the pathogen of essential nutrients. The intramembrane protease, Rip1, plays an important role in the adaptation to these stresses, at least partially by the cleavage of membrane-bound transcriptional regulators. Although Rip1 is known to be critical for surviving copper intoxication and nitric oxide exposure, these stresses do not fully account for the regulatory protein's essentiality during infection. In this work, we demonstrate that Rip1 is also necessary for growth in low-iron and low-zinc conditions, similar to those imposed by the immune system. Using a newly generated library of sigma factor mutants, we show that the known regulatory target of Rip1, SigL, shares this defect. Transcriptional profiling under iron-limiting conditions supported the coordinated activity of Rip1 and SigL and demonstrated that the loss of these proteins produces an exaggerated iron starvation response. These observations demonstrate that Rip1 coordinates several aspects of metal homeostasis and suggest that a Rip1- and SigL-dependent pathway is necessary to thrive in the iron-deficient environments encountered during infection. IMPORTANCE Metal homeostasis represents a critical point of interaction between the mammalian immune system and potential pathogens. While the host attempts to intoxicate microbes with high concentrations of copper or starve the invader of iron and zinc, successful pathogens have acquired mechanisms to overcome these defenses. Our work identifies a regulatory pathway consisting of the Rip1 intramembrane protease and the sigma factor, SigL, that is essential for the important human pathogen, Mycobacterium tuberculosis, to grow in low-iron or low-zinc conditions such as those encountered during infection. In conjunction with Rip1's known role in resisting copper toxicity, our work implicates this protein as a critical integration point that coordinates the multiple metal homeostatic systems required for this pathogen to survive in host tissue.


Subject(s)
Mycobacterium tuberculosis , Peptide Hydrolases , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Copper/metabolism , Homeostasis , Iron/metabolism , Mammals , Metals , Mycobacterium tuberculosis/metabolism , Peptide Hydrolases/metabolism , Sigma Factor/metabolism , Zinc/metabolism
2.
Int J Med Microbiol ; 308(6): 582-589, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29409696

ABSTRACT

Heme is a cofactor that is essential for cellular respiration and for the function of many enzymes. If heme levels become too low within the cell, S. aureus switches from producing energy via respiration to producing energy by fermentation. S. aureus encodes two heme oxygenases, IsdI and IsdG, which cleave the porphyrin heme ring releasing iron for use as a nutrient source. Both isdI and isdG are only expressed under low iron conditions and are regulated by the canonical Ferric Uptake Regulator (Fur). Here we demonstrate that unregulated expression of isdI and isdG within S. aureus leads to reduced growth under low iron conditions. Additionally, the constitutive expression of these enzymes leads to decreased heme abundance in S. aureus, an increase in the fermentation product lactate, and increased resistance to gentamicin. This work demonstrates that S. aureus has developed tuning mechanisms, such as Fur regulation, to ensure that the cell has sufficient quantities of heme for efficient ATP production through aerobic respiration.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Heme Oxygenase (Decyclizing)/metabolism , Heme/physiology , Homeostasis , Repressor Proteins/metabolism , Staphylococcus aureus/enzymology , Aerobiosis , Bacterial Proteins/genetics , Heme Oxygenase (Decyclizing)/genetics , Iron/metabolism , Mixed Function Oxygenases/genetics , Oxygenases/genetics , Repressor Proteins/genetics , Staphylococcus aureus/genetics
3.
mSphere ; 2(4)2017.
Article in English | MEDLINE | ID: mdl-28815214

ABSTRACT

Heme is essential for respiration across all domains of life. However, heme accumulation can lead to toxicity if cells are unable to either degrade or export heme or its toxic by-products. Under aerobic conditions, heme degradation is performed by heme oxygenases, enzymes which utilize oxygen to cleave the tetrapyrrole ring of heme. The HO-1 family of heme oxygenases has been identified in both bacterial and eukaryotic cells, whereas the IsdG family has thus far been described only in bacteria. We identified a hypothetical protein in the eukaryotic green alga Chlamydomonas reinhardtii, which encodes a protein containing an antibiotic biosynthesis monooxygenase (ABM) domain consistent with those associated with IsdG family members. This protein, which we have named LFO1, degrades heme, contains similarities in predicted secondary structures to IsdG family members, and retains the functionally conserved catalytic residues found in all IsdG family heme oxygenases. These data establish LFO1 as an IsdG family member and extend our knowledge of the distribution of IsdG family members beyond bacteria. To gain further insight into the distribution of the IsdG family, we used the LFO1 sequence to identify 866 IsdG family members, including representatives from all domains of life. These results indicate that the distribution of IsdG family heme oxygenases is more expansive than previously appreciated, underscoring the broad relevance of this enzyme family. IMPORTANCE This work establishes a protein in the freshwater alga Chlamydomonas reinhardtii as an IsdG family heme oxygenase. This protein, LFO1, exhibits predicted secondary structure and catalytic residues conserved in IsdG family members, in addition to a chloroplast localization sequence. Additionally, the catabolite that results from the degradation of heme by LFO1 is distinct from that of other heme degradation products. Using LFO1 as a seed, we performed phylogenetic analysis, revealing that the IsdG family is conserved in all domains of life. Additionally, C. reinhardtii contains two previously identified HO-1 family heme oxygenases, making C. reinhardtii the first organism shown to contain two families of heme oxygenases. These data indicate that C. reinhardtii may have unique mechanisms for regulating iron homeostasis within the chloroplast.

4.
Proc Natl Acad Sci U S A ; 114(32): E6652-E6659, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28739897

ABSTRACT

Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.


Subject(s)
Bacterial Proteins/metabolism , Coproporphyrinogen Oxidase/metabolism , Coproporphyrins/biosynthesis , Photosensitizing Agents/metabolism , Phototherapy , Staphylococcal Skin Infections/enzymology , Staphylococcal Skin Infections/therapy , Staphylococcus aureus/metabolism , Animals , Bacterial Proteins/genetics , Coproporphyrinogen Oxidase/genetics , Coproporphyrins/genetics , Disease Models, Animal , Mice , Staphylococcus aureus/genetics
5.
Cell Host Microbe ; 16(4): 531-7, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25299336

ABSTRACT

Adaptations that enable antimicrobial resistance often pose a fitness cost to the microorganism. Resistant pathogens must therefore overcome such fitness decreases to persist within their hosts. Here we demonstrate that the reduced fitness associated with one resistance-conferring mutation can be offset by community interactions with microorganisms harboring alternative mutations or via interactions with the human microbiota. Mutations that confer antibiotic resistance in the human pathogen Staphylococcus aureus led to decreased fitness, whereas coculture or coinfection of two distinct mutants resulted in collective recovery of fitness comparable to that of wild-type. Such fitness enhancements result from the exchange of metabolites between distinct mutants, leading to enhanced growth, virulence factor production, and pathogenicity. Interspecies fitness enhancements were also identified, as members of the human microbiota can promote growth of antibiotic-resistant S. aureus. Thus, inter- and intraspecies community interactions offset fitness costs and enable S. aureus to develop antibiotic resistance without loss of virulence.


Subject(s)
Drug Resistance, Bacterial , Microbial Interactions , Staphylococcus aureus/physiology , Animals , Coinfection/microbiology , Coinfection/pathology , Disease Models, Animal , Humans , Mice, Inbred C57BL , Mutation , Osteomyelitis/microbiology , Osteomyelitis/pathology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism , Virulence
6.
Mol Cell ; 45(3): 279-91, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22226051

ABSTRACT

Decapping represents a critical control point in regulating expression of protein coding genes. Here, we demonstrate that decapping also modulates expression of long noncoding RNAs (lncRNAs). Specifically, levels of >100 lncRNAs in yeast are controlled by decapping and are degraded by a pathway that occurs independent of decapping regulators. We find many lncRNAs degraded by DCP2 are expressed proximal to inducible genes. Of these, we show several genes required for galactose utilization are associated with lncRNAs that have expression patterns inversely correlated with their mRNA counterpart. Moreover, decapping of these lncRNAs is critical for rapid and robust induction of GAL gene expression. Failure to destabilize a lncRNA known to exert repressive histone modifications results in perpetuation of a repressive chromatin state that contributes to reduced plasticity of gene activation. We propose that decapping and lncRNA degradation serve a vital role in transcriptional regulation specifically at inducible genes.


Subject(s)
Exoribonucleases/genetics , Gene Expression Regulation, Fungal , RNA Caps/metabolism , RNA Processing, Post-Transcriptional , RNA, Untranslated/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Exoribonucleases/metabolism , Gene Knockout Techniques , Promoter Regions, Genetic , RNA Caps/genetics , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...