Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 94(13): 137601, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15904036

ABSTRACT

Direct electron spin resonance (ESR) on a high mobility two-dimensional electron gas in a single AlAs quantum well reveals an electronic g factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 G. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin-orbit interaction and a modulation of the electron wave vector caused by the microwave electric field. This contrasts markedly with conventional ESR that detects through the microwave magnetic field.

2.
Phys Rev Lett ; 92(24): 246801, 2004 Jun 18.
Article in English | MEDLINE | ID: mdl-15245118

ABSTRACT

Magnetodrag reveals the nature of compressible states and the underlying interplay of disorder and interactions. At nu=3/2 clear T(4/3) dependence is observed, which signifies the metallic nature of the N=0 Landau level. In contrast, drag in higher Landau levels reveals an additional contribution, which anomalously grows with decreasing T before turning to zero following a thermal activation law. The anomalous drag is discussed in terms of electron-hole asymmetry arising from disorder and localization, and the crossover to normal drag at high fields as due to screening of disorder.

3.
Phys Rev Lett ; 93(26 Pt 1): 266805, 2004 Dec 31.
Article in English | MEDLINE | ID: mdl-15698006

ABSTRACT

We observe the total filling factor nuT=1 quantum Hall state in a bilayer two-dimensional electron system with virtually no tunneling. We find thermally activated transport in the balanced system with a monotonic increase of the activation energy with decreasing d/lB below 1.65. In the imbalanced system we find activated transport in each of the layers separately, yet the activation energies show a striking asymmetry around the balance point, implying a different excitation spectrum for the separate layers forming the condensed state.

4.
Phys Rev Lett ; 89(26): 266801, 2002 Dec 23.
Article in English | MEDLINE | ID: mdl-12484846

ABSTRACT

We observe the transition from a spin-unpolarized to a polarized nu=2/3 fractional quantum Hall state at low currents (<5 nA), recently described in terms of quantum Hall ferromagnetism, versus density and parallel magnetic field. At larger currents the time and current dependent huge longitudinal resistance (HLR) is always initiated at the transition. Transport in the HLR regime is linear and the amount of current-induced nuclear polarization in the HLR is comparable to the thermal nuclear polarization at approximately 20 mK and 10 T. A current-induced disorder in the nuclear polarization is speculated to cause the enhanced resistance in the HLR regime.

5.
Phys Rev Lett ; 88(14): 149701; author reply 14702, 2002 Apr 08.
Article in English | MEDLINE | ID: mdl-11955182
SELECTION OF CITATIONS
SEARCH DETAIL