Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 218(5): 698-706, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29617824

ABSTRACT

Background: Dolutegravir (DTG) is an integrase strand-transfer inhibitor (INSTI) used for treatment of human immunodeficiency virus (HIV)-infected individuals. Owing to its high genetic barrier to resistance, DTG has been clinically investigated as maintenance monotherapy to maintain viral suppression and to reduce complication and healthcare costs. Our study aims to explain the underlying mechanism related to the emergence of a S230R substitution in patients who experienced virologic failure while using DTG monotherapy. Methods: We evaluated the effect of the S230R substitution in regard to integrase enzyme activity, viral infectivity, replicative capacity, and susceptibility to different INSTIs by biochemical and cell-based assays. Results: The S230R substitution conferred a 63% reduction in enzyme efficiency. S230R virus was 1.29-fold less infectious than wild-type virus but could replicate in PM1 cells without significant delay. Resistance levels against DTG, cabotegravir, raltegravir, and elvitegravir in tissue culture were 3.85-, 3.72-, 1.52-, and 1.21-fold, respectively, in virus with the S230R substitution. Conclusions: Our data indicate that the S230R substitution is comparable to the previously reported R263K substitution in some respects. Virologic failure during DTG monotherapy can occur through the development of the S230R or R263K mutation, without the need for high-level DTG resistance.


Subject(s)
Amino Acid Substitution , Drug Resistance, Viral , HIV Infections/drug therapy , HIV Integrase Inhibitors/therapeutic use , HIV/drug effects , Heterocyclic Compounds, 3-Ring/therapeutic use , Viral Load , HIV/genetics , HIV/growth & development , HIV/isolation & purification , HIV Integrase/genetics , HIV Integrase/metabolism , Humans , Maintenance Chemotherapy/methods , Microbial Sensitivity Tests , Mutation, Missense , Oxazines , Piperazines , Pyridones , Treatment Failure , Virus Replication
2.
Altern Lab Anim ; 42(4): 235-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25290944

ABSTRACT

Pulmonary fibrosis is a progressive and irreversible disorder with no appropriate cure. A practical and effective experimental model that recapitulates the disease will greatly benefit the research community and, ultimately, patients. In this study, we tested the lung slice culture (LSC) system for its potential use in drug screening and disease biomarker identification. Fibrosis was induced by treating rat lung slices with 1ng/ml TGF-ß1 and 2.5µM CdCl2, quantified by measuring the content of hydroxyproline, and confirmed by detecting the expression of collagen type III alpha 1 (Col3α1) and connective tissue growth factor (CTGF) genes. The anti-fibrotic effects of pirfenidone, spironolactone and eplerenone were assessed by their capability to reduce hydroxyproline content. A subtractive hybridisation technique was used to create two cDNA libraries (subtracted and unsubtracted) from lung slices. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was employed to assess the subtraction efficiency of the subtracted cDNA library. Clones from the two libraries were sequenced and the genes were identified by performing a BLAST search on the NCBI GenBank database. Furthermore, the relevance of the genes to fibrosis formation was verified. The results presented here show that fibrosis was effectively induced in cultured lung slices, which exhibited significantly elevated levels of hydroxyproline and Col3α1/CTGF gene expression. Several inhibitors have demonstrated their anti-fibrotic effects by significantly reducing hydroxyproline content. The subtracted cDNA library, which was enriched for differentially expressed genes, was used to successfully identify genes associated with fibrosis. Collectively, the results indicate that our LSC system is an effective model for the screening of drug candidates and for disease biomarker identification.


Subject(s)
Drug Evaluation, Preclinical , Gene Library , Pulmonary Fibrosis/drug therapy , Animals , Biomarkers/analysis , Humans , Male , Rats , Rats, Sprague-Dawley , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...